Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Synergistic regularization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Synergistic regularization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Synergistic regularization"
Cueva, Evelyn, Alexander Meaney, Samuli Siltanen und Matthias J. Ehrhardt. „Synergistic multi-spectral CT reconstruction with directional total variation“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, Nr. 2204 (05.07.2021): 20200198. http://dx.doi.org/10.1098/rsta.2020.0198.
Der volle Inhalt der QuelleMehranian, Abolfazl, Martin A. Belzunce, Claudia Prieto, Alexander Hammers und Andrew J. Reader. „Synergistic PET and SENSE MR Image Reconstruction Using Joint Sparsity Regularization“. IEEE Transactions on Medical Imaging 37, Nr. 1 (Januar 2018): 20–34. http://dx.doi.org/10.1109/tmi.2017.2691044.
Der volle Inhalt der QuellePerelli, Alessandro, und Martin S. Andersen. „Regularization by denoising sub-sampled Newton method for spectral CT multi-material decomposition“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, Nr. 2200 (10.05.2021): 20200191. http://dx.doi.org/10.1098/rsta.2020.0191.
Der volle Inhalt der QuelleJørgensen, J. S., E. Ametova, G. Burca, G. Fardell, E. Papoutsellis, E. Pasca, K. Thielemans et al. „Core Imaging Library - Part I: a versatile Python framework for tomographic imaging“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, Nr. 2204 (05.07.2021): 20200192. http://dx.doi.org/10.1098/rsta.2020.0192.
Der volle Inhalt der QuelleBahadur, Rabya, Saeed ur Rehman, Ghulam Rasool und Muhammad AU Khan. „Synergy Estimation Method for Simultaneous Activation of Multiple DOFs Using Surface EMG Signals“. NUST Journal of Engineering Sciences 14, Nr. 2 (31.01.2022): 66–73. http://dx.doi.org/10.24949/njes.v14i2.661.
Der volle Inhalt der QuelleZhong, Lihua, Tong Ye, Yuyao Yang, Feng Pan, Lei Feng, Shuzhe Qi und Yuping Huang. „Deep Reinforcement Learning-Based Joint Low-Carbon Optimization for User-Side Shared Energy Storage–Distribution Networks“. Processes 12, Nr. 9 (23.08.2024): 1791. http://dx.doi.org/10.3390/pr12091791.
Der volle Inhalt der QuelleDu, Lehui, Baolin Qu, Fang Liu, Na Ma, Shouping Xu, Wei Yu, Xiangkun Dai und Xiang Huang. „Precise prediction of the radiation pneumonitis with RPI: An explorative preliminary mathematical model using genotype information.“ Journal of Clinical Oncology 37, Nr. 15_suppl (20.05.2019): e14569-e14569. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e14569.
Der volle Inhalt der QuelleDi Sciacca, G., L. Di Sieno, A. Farina, P. Lanka, E. Venturini, P. Panizza, A. Dalla Mora, A. Pifferi, P. Taroni und S. R. Arridge. „Enhanced diffuse optical tomographic reconstruction using concurrent ultrasound information“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, Nr. 2204 (05.07.2021): 20200195. http://dx.doi.org/10.1098/rsta.2020.0195.
Der volle Inhalt der QuelleLu, Yifan, Ziqi Zhang, Chunfeng Yuan, Peng Li, Yan Wang, Bing Li und Weiming Hu. „Set Prediction Guided by Semantic Concepts for Diverse Video Captioning“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 4 (24.03.2024): 3909–17. http://dx.doi.org/10.1609/aaai.v38i4.28183.
Der volle Inhalt der QuelleAnacleto, Adilson, Karina Beatriz dos Santos Ferreira da Rocha, Raíssa Leal Calliari, Maike dos Santos und Sandro Deretti. „Production Arrangement of Cachaça: Comparative Study Between Morretes in the Paraná Coast and Luiz Alves in Itajaí Valley - Santa Catarina“. Revista de Gestão Social e Ambiental 18, Nr. 2 (26.06.2024): e07510. http://dx.doi.org/10.24857/rgsa.v18n2-158.
Der volle Inhalt der QuelleDissertationen zum Thema "Synergistic regularization"
Wang, Zhihan. „Reconstruction des images médicales de tomodensitométrie spectrale par apprentissage profond“. Electronic Thesis or Diss., Brest, 2024. http://www.theses.fr/2024BRES0124.
Der volle Inhalt der QuelleComputed tomography (CT), a cornerstone of diagnostic imaging, focuses on two contemporary topics: radiation dose reduction and multi-energy imaging, which are inherently interconnected. As an emerging advancement, spectral CT can capture data across a range of X-ray energies for bettermaterial differentiation, reducing the need for repeat scans and thereby lowering overall radiationexposure. However, the reduced photon count in each energy bin makes traditional reconstruction methods susceptible to noise. Therefore, deep learning (DL) techniques, which have shown great promise in medical imaging, are being considered. This thesis introduces a novel regularizationterm that incorporates convolutional neural networks (CNNs) to connect energy bins to a latent variable, leveraging all binned data for synergistic reconstruction. As a proof-of concept, we propose Uconnect and its variant MHUconnect, employing U-Nets and the multi-head U-Net, respectively, as the CNNs, with images at a specific energy bin serving as the latent variable for supervised learning.The two methods are validated to outperform several existing approaches in reconstruction and denoising tasks