Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Symmetric varieties“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Symmetric varieties" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Symmetric varieties"
Bifet, Emili. „On complete symmetric varieties“. Advances in Mathematics 80, Nr. 2 (April 1990): 225–49. http://dx.doi.org/10.1016/0001-8708(90)90026-j.
Der volle Inhalt der QuelleGuay, Nicolas. „Embeddings of symmetric varieties“. Transformation Groups 6, Nr. 4 (Dezember 2001): 333–52. http://dx.doi.org/10.1007/bf01237251.
Der volle Inhalt der QuelleDe Concini, C., und T. A. Springer. „Compactification of symmetric varieties“. Transformation Groups 4, Nr. 2-3 (Juni 1999): 273–300. http://dx.doi.org/10.1007/bf01237359.
Der volle Inhalt der QuelleHong, Jiuzu, und Korkeat Korkeathikhun. „Nilpotent varieties in symmetric spaces and twisted affine Schubert varieties“. Representation Theory of the American Mathematical Society 26, Nr. 20 (02.06.2022): 585–615. http://dx.doi.org/10.1090/ert/613.
Der volle Inhalt der QuelleCan, Mahir Bilen, Roger Howe und Lex Renner. „Monoid embeddings of symmetric varieties“. Colloquium Mathematicum 157, Nr. 1 (2019): 17–33. http://dx.doi.org/10.4064/cm7644-7-2018.
Der volle Inhalt der QuelleLi, Yiqiang. „Quiver varieties and symmetric pairs“. Representation Theory of the American Mathematical Society 23, Nr. 1 (17.01.2019): 1–56. http://dx.doi.org/10.1090/ert/522.
Der volle Inhalt der QuelleUzawa, Tohru. „Symmetric varieties over arbitrary fields“. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333, Nr. 9 (November 2001): 833–38. http://dx.doi.org/10.1016/s0764-4442(01)02152-8.
Der volle Inhalt der QuelleCuntz, M., Y. Ren und G. Trautmann. „Strongly symmetric smooth toric varieties“. Kyoto Journal of Mathematics 52, Nr. 3 (2012): 597–620. http://dx.doi.org/10.1215/21562261-1625208.
Der volle Inhalt der QuellePragacz, P. „Determinantal varieties and symmetric polynomials“. Functional Analysis and Its Applications 21, Nr. 3 (Juli 1987): 249–50. http://dx.doi.org/10.1007/bf02577147.
Der volle Inhalt der QuelleAramova, Annetta G. „Symmetric products of Gorenstein varieties“. Journal of Algebra 146, Nr. 2 (März 1992): 482–96. http://dx.doi.org/10.1016/0021-8693(92)90079-2.
Der volle Inhalt der QuelleDissertationen zum Thema "Symmetric varieties"
Esposito, Francesco. „Orbits in symmetric varieties“. Doctoral thesis, La Sapienza, 2005. http://hdl.handle.net/11573/917110.
Der volle Inhalt der QuelleYoung, Ian David. „Symmetric squares of modular Abelian varieties“. Thesis, University of Sheffield, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500087.
Der volle Inhalt der Quellemazzon, andrea. „Hilbert functions and symmetric tensors identifiability“. Doctoral thesis, Università di Siena, 2021. http://hdl.handle.net/11365/1133145.
Der volle Inhalt der QuelleMbirika, Abukuse III. „Analysis of symmetric function ideals: towards a combinatorial description of the cohomology ring of Hessenberg varieties“. Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/708.
Der volle Inhalt der QuelleShu, Cheng. „E-Polynomial of GLn⋊<σ>-character varieties“. Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7038.
Der volle Inhalt der QuelleLet σ be the transpose-inverse automorphism of GLn so that we have a semi-direct product GLn⋊<σ>. Let Y→X be a double covering of Riemann surfaces, which is exactly the unramified part of a ramified covering of compact Riemann surfaces. The non trivial covering transformation is denoted by τ. To each puncture (removed ramification point), we prescribe a GLn(C)-conjugacy class contained in the connected component GLn(C).σ . And we require the collection C of these conjugacy classes to be generic. Our GLn(C)⋊<σ>-character variety is the moduli of the pairs (L,Φ), where L is a local system on Y and Φ:L → τ*L* is an isomorphism, whose monodromy at the punctures are determined by C. We compute the E-polynomial of this character variety. To this end, we use a theorem of Katz and translate the problem to point-counting over finite fields. The counting formula involves the irreducible characters of GL_n(q)⋊<σ>, and so the l-adic character table of GL_n(q)⋊<σ> is determined along the way. The resulting polynomial is expressed as the in-ner product of certain symmetric functions associated to the wreath product (Z/2Z)^N⋊(S_N), with N=[n/2]
Chen, Jiaming. „Topology at infinity and atypical intersections for variations of Hodge structures“. Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7049.
Der volle Inhalt der QuelleThis thesis studies topological and geometrical aspects of some interesting spaces springing from Hodge theory, such as locally symmetric varieties, and their generalization, Hodge varieties; and the period maps which take value in them.In Chapter 1 (joint work with Looijenga) we study the Baily-Borel compactifications of locally symmetric varieties and its toroidal variants, as well as the Deligne-Mumford compactification of the moduli of curves from a topological viewpoint. We define a "stacky homotopy type" for these spaces as the homotopy type of a small category and thus generalize an old result of Charney-Lee on the Baily-Borel compactificationof Ag and recover (and rephrase) a more recent one of Ebert-Giansiracusa on the Deligne-Mumford compactification. We also describe an extension of the period map for Riemann surfaces in these terms.In Chapter 2 (joint work with Looijenga) we give a relatively simple algebrogeometric proof of another result of Charney and Lee on the stable cohomology of the Satake-Baily-Borel compactification of Ag and show that this stable cohomology comes with a mixed Hodge structure of which we determine the Hodge numbers.In Chapter 3 (themain chapter of this thesis) we study an atypical intersection problem for an integral polarized variation of Hodge structure V on a smooth irreducible complex quasi-projective variety S. We show that the union of the non-factor special subvarieties for (S,V), which are of Shimura type with dominant period maps, is a finite union of special subvarieties of S. This proves a conjecture of Klingler
Menes, Thibaut. „Grandes valeurs des formes de Maass sur des quotients compacts de grassmanniennes hyperboliques dans l’aspect volume“. Electronic Thesis or Diss., Paris 13, 2024. http://www.theses.fr/2024PA131059.
Der volle Inhalt der QuelleLet n > m = 1 be integers such that n + m >= 4 is even. We prove the existence, in the volume aspect, of exceptional Maass forms on compact quotients of the hyperbolic Grassmannian of signature (n,m). The method builds upon the work of Rudnick and Sarnak, extended by Donnelly and then generalized by Brumley and Marshall to higher rank. It combines a counting argument with a period relation, showingthat a certain period distinguishes theta lifts from an auxiliary group. The congruence structure is defined with respect to this period and the auxiliary group is either U(m,m) or Sp_2m(R), making (U(n,m),U(m,m)) or (O(n,m),Sp_2m(R)) a type 1 dual reductive pair. The lower bound is naturally expressed, up to a logarithmic factor, as the ratio of the volumes, with the principal congruence structure on the auxiliary group
Petracci, Andrea. „On Mirror Symmetry for Fano varieties and for singularities“. Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/55877.
Der volle Inhalt der QuellePrince, Thomas. „Applications of mirror symmetry to the classification of Fano varieties“. Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/43374.
Der volle Inhalt der QuelleLi, Binru [Verfasser], und Fabrizio [Akademischer Betreuer] Catanese. „Moduli spaces of varieties with symmetries / Binru Li. Betreuer: Fabrizio Catanese“. Bayreuth : Universität Bayreuth, 2016. http://d-nb.info/1113107324/34.
Der volle Inhalt der QuelleBücher zum Thema "Symmetric varieties"
Manivel, Laurent. Symmetric functions, Schubert polynomials, and degeneracy loci. Providence, RI: American Mathematical Society, 2001.
Den vollen Inhalt der Quelle findenFukaya, Kenji. Lagrangian Floer theory and mirror symmetry on compact toric manifolds. Paris: Société Mathématique de France, 2016.
Den vollen Inhalt der Quelle findenNoriko, Yui, Yau Shing-Tung 1949-, Lewis James Dominic 1953- und Banff International Research Station for Mathematics Innovation & Discovery., Hrsg. Mirror symmetry V: Proceedings of the BIRS workshop on Calabi-Yau varieties and mirror symmetry, December 6-11, 2003, Banff International Research Station for Mathematics Innovation & Discovery. Providence, R.I: American Mathematical Society, 2006.
Den vollen Inhalt der Quelle findenRodríguez, Rubí E., 1953- editor of compilation, Hrsg. Riemann and Klein surfaces, automorphisms, symmetries and moduli spaces: Conference in honor of Emilio Bujalance on Riemann and Klein surfaces, symmetries and moduli spaces, June 24-28, 2013, Linköping University, Linköping, Sweden. Providence, Rhode Island: American Mathematical Society, 2014.
Den vollen Inhalt der Quelle findenMumford, David, Avner Ash, Michael Rapoport und Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenMumford, David, Avner Ash, Michael Rapoport und Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenMumford, David, Avner Ash, Michael Rapoport und Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenMumford, David, Avner Ash, Michael Rapoport und Yung-sheng Tai. Smooth Compactifications of Locally Symmetric Varieties. Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenSmooth compactifications of locally symmetric varieties. 2. Aufl. Cambridge, UK: Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Symmetric varieties"
Fulton, William, und Piotr Pragacz. „Symmetric polynomials useful in geometry“. In Schubert Varieties and Degeneracy Loci, 26–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0096383.
Der volle Inhalt der QuelleKrashen, Daniel, und David J. Saltman. „Severi—Brauer Varieties and Symmetric Powers“. In Encyclopaedia of Mathematical Sciences, 59–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05652-3_5.
Der volle Inhalt der QuelleDijkgraaf, Robbert. „Fields, Strings, Matrices and Symmetric Products“. In Moduli of Curves and Abelian Varieties, 151–99. Wiesbaden: Vieweg+Teubner Verlag, 1999. http://dx.doi.org/10.1007/978-3-322-90172-9_8.
Der volle Inhalt der QuelleHelminck, A. G. „On Orbit Decompositions for Symmetric k-Varieties“. In Symmetry and Spaces, 83–127. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4875-6_6.
Der volle Inhalt der QuelleHain, Richard. „Locally Symmetric Families of Curves and Jacobians“. In Moduli of Curves and Abelian Varieties, 91–108. Wiesbaden: Vieweg+Teubner Verlag, 1999. http://dx.doi.org/10.1007/978-3-322-90172-9_5.
Der volle Inhalt der QuelleMumford, David. „A New Approach to Compactifying Locally Symmetric Varieties“. In Selected Papers, 571–84. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4265-7_19.
Der volle Inhalt der QuellePopov, Vladimir L., und Evgueni A. Tevelev. „Self-dual Projective Algebraic Varieties Associated With Symmetric Spaces“. In Encyclopaedia of Mathematical Sciences, 131–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05652-3_8.
Der volle Inhalt der QuelleCiubotaru, Dan, Kyo Nishiyama und Peter E. Trapa. „Regular Orbits of Symmetric Subgroups on Partial Flag Varieties“. In Representation Theory, Complex Analysis, and Integral Geometry, 61–86. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-4817-6_4.
Der volle Inhalt der QuelleTai, Hsin-sheng. „A class of symmetric functions and Chern classes of projective varieties“. In Lecture Notes in Mathematics, 261–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0087539.
Der volle Inhalt der QuelleHelminck, Aloysius. „Combinatorics related to orbit closures of symmetric subgroups in flag varieties“. In CRM Proceedings and Lecture Notes, 71–90. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/crmp/035/05.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Symmetric varieties"
Ghorashi, Ali, Sachin Vaidya, Mikael C. Rechtsman, Wladimir A. Benalcazar, Marin Soljačić und Thomas Christensen. „Is Photonic Band Topology Common?“ In CLEO: Fundamental Science, FW3M.8. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fw3m.8.
Der volle Inhalt der QuelleMakam, Visu, und Avi Wigderson. „Symbolic determinant identity testing (SDIT) is not a null cone problem; and the symmetries of algebraic varieties“. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2020. http://dx.doi.org/10.1109/focs46700.2020.00086.
Der volle Inhalt der Quelle