Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Symétries asymptotiques“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Symétries asymptotiques" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Symétries asymptotiques"
Fanaï, Hamid-Reza. „Une remarque sur la symétrie asymptotique de la fonction de Green“. Proceedings of the American Mathematical Society 133, Nr. 3 (20.09.2004): 805–7. http://dx.doi.org/10.1090/s0002-9939-04-07683-x.
Der volle Inhalt der QuelleBoussicault, Adrien, Simone Rinaldi und Samanta Socci. „The number of directed $k$-convex polyominoes“. Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings, 27th..., Proceedings (01.01.2015). http://dx.doi.org/10.46298/dmtcs.2465.
Der volle Inhalt der QuelleGorin, Vadim, und Greta Panova. „Asymptotics of symmetric polynomials“. Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AS,..., Proceedings (01.01.2013). http://dx.doi.org/10.46298/dmtcs.12791.
Der volle Inhalt der QuelleDissertationen zum Thema "Symétries asymptotiques"
Weller, Thibaut. „Etude des symétries et modèles de plaques en piézoélectricité linéarisée“. Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2004. http://tel.archives-ouvertes.fr/tel-00011243.
Der volle Inhalt der Quelleà la classification des symétries du phénomène de couplage piézoélectrique
linéaire; on se focalise ensuite sur la dérivation de modèles de plaques,
toujours dans le cadre de la piézoélectricité linéarisée. On obtient ainsi
des résultats qui permettent de présenter des propriétés de solides
piézoélectriques relatives au matériau, à la structure ainsi qu'à leurs
interactions.
Les trois premiers Chapitres concernent les symétries. On rappelle d'abord
que ces dernières peuvent être de différentes natures. Ensuite, les outils
qui permettent de les appréhender et de les lier entre elles sont présentées.
Les divers outils utilisés conduisent alors au principal résultat de la
première partie : la classification des symétries du phénomène de couplage
piézoélectrique linéaire en quinze familles distinctes.
Dans les deux derniers Chapitres, on obtient des modèles de plaques
linéairement piézoélectriques à l'aide d'une méthode mathématique rigoureuse
consistant à étudier le comportement d'un solide tridimensionnel lorsque son
épaisseur, vue comme un paramètre, tend vers zéro. Dans le cas statique, il
apparaît deux modèles différents. Ils dépendent en fait du type de chargement
électrique et sont reliés aux cas pour lesquels les plaques piézoélectriques
sont utilisés comme capteurs ou comme actionneurs. Les cinématiques limites
sont précisées et les deux lois de comportement sont explicitement fournies
pour tous les types de matériau constitutif. Dans le cas dynamique, on montre
que c'est l'ordre de grandeur du rapport entre l'épaisseur et la densité de
la plaque qui joue un rôle déterminant.
Vilatte, Matthieu. „Adventures in (thermal) Wonderland“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. https://theses.hal.science/tel-04791687.
Der volle Inhalt der QuelleThe work we present in this thesis is structured around the concepts of field theories and geometry, which are applied to gravity and thermalisation.On the gravity side, our work aims at shedding new light on the asymptotic structure of the gravitational field in the context of asymptotically flat spacetimes, using information encoded on the conformal boundary. The latter is a null hypersurface on which Carrollian physics instead of relativistic physics is at work. A Carroll structure on a manifold is a degenerate metric and a vector field spanning the kernel of the latter. This vector selects a particular direction which can be the starting point for describing Carroll structures in a split frame. We first elaborate on the geometry one can construct on such a manifold in this frame, including a comprehensive study of connections and (conformal isometries). Effective actions can be defined on a Carrollian background. Canonical momenta conjugate to the geometry or the connection are introduced, and the variation of the action shall give their conservation equations, upon which isometric charges can be reached.Carrollian physics is also known to emerge as the vanishing speed of light of relativistic physics. This limit usually exhibits more Carrollian descendants than what might be expected from a naive intrinsic analysis, as shown in the explicit examples of Carrollian fluids, Carrollian scalar fields (for which two actions, electric and magnetic arise in the limit) and the Carrollian Chern-Simons action. The richness of the limiting procedure is due to this versatility in describing a palette of degrees of freedom. This turns out to be an awesome tool in studying the relationship between asymptotically anti de Sitter (AdS) and flat spacetimes.Metrics on asymptotically flat spacetimes can be expressed as an infinite expansion in a gauge, covariant with respect to their null boundaries. This slight extension of the Newman-Unti gauge is shown to be valid also in AdS, which allows to take the flat limit in the bulk i.e. the Carrollian limit on the boundary, while preserving this covariance feature. We demonstrate that the infinite solution space of Ricci-flat spacetimes actually arises from the Laurent expansion of the AdS boundary energy-momentum tensor. These replicas obey at each order Carrollian dynamics (flux/balance laws). Focusing our attention to Petrov algebraically special spacetimes (for which the infinite expansion resums), we use the Carrollian flux/balance laws together with the conservation of the energy-momentum and Cotton tensors to build two dual towers of bulk charges from a purely boundary perspective. Among them we recover the mass and angular momentum mutipolar moments for the Kerr-Taub-NUT family. The covariant gauge is also the appropriate framework to unveil the action of hidden symmetries of gravity on the null boundary. In this thesis we study exhaustively the case of Ehlers' $SL(2,mathbb{R})$ symmetry.On the side of thermal field theory we see that while at infinite temperature a CFT is described by its spectrum and the OPE coefficients, additional data is needed in the thermal case. These are the average values of primary operators, completely determined up to a constant coefficient. Numerical simulations, duality with black-hole states in AdS or spectral analyses are the methods usually employed to uncover the latter. Our work features a new breadth. Starting from two coupled harmonic oscillators, we show that they are related to conformal ladder graphs of fishnet theories. This observation is the first step for setting a new correspondence between thermal partition functions and graphs
Bonnabel, Silvère. „Observateurs asymptotiques invariants : théories et exemples“. Paris, ENMP, 2007. http://www.theses.fr/2007ENMP1590.
Der volle Inhalt der QuelleThis thesis aims at developing nonlinear estimators, namely observers of the type of Luenberger or extended Kalman filter. We first build an observer to estimate internal concentrations in a polymerisation reactor of TOTAL. Using a model and the measurement of flows and temperatures we give a real-time estimation of the concentrations. The estimator was implemented on an industrial plant. Noticing the kinetic equations of chemistry are independent of the choice of units (mol/l of kg/l) we wondered on the possibility to preserve this property when building estimators. We realized this new constraint allows suggesting interesting candidates observers, and fruitful change of variables to study the asymptotic behaviour. Then we developed a general theory on observers and symmetries. The main contribution of the thesis is to isolate a large class of systems for which one can build interesting candidates observers. The error (between true and estimated state) equation has strong properties, reminding the linear stationary case. The theory was applied to several examples of engineering interest, in particular velocity-aided inertial navigation. The last part of the thesis shows the methodology is a useful guide to tackle some examples which do not belong to the theory’s framework. In particular we built an observer for data assimilation in oceanography
Moutoussamy, Isabelle. „Symétries et singularités de solutions d'équations paraboliques semi-linéaires“. Tours, 1987. http://www.theses.fr/1987TOUR4009.
Der volle Inhalt der QuelleGabriel, Franck. „Champs d'holonomies et matrices aléatoires : symétries de tressage et de permutation“. Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066168/document.
Der volle Inhalt der QuelleThis thesis focuses on planar Yang-Mills measures and planar Markovian holonomy fields. We consider two different questions : the study of planar Markovian holonomy fields with fixed structure group and the asymptotic study of the planar Yang-Mills measures when the dimension of the structure group grows. We define the notion of planar Markovian holonomy fields which generalizes the concept of planar Yang-Mills measures. We construct, characterize and classify the planar Markovian holonomy fields by introducing a new symmetry : the invariance under the action of braids. We show that there is a bijection between planar Markovian holonomy fields and some equivalent classes of Lévy processes. We use these results in order to characterize Markovian holonomy fields on spherical surfaces. The Markovian holonomy fields with the symmetric group as structure group can be constructed using random ramified coverings. We prove that the monodromies of these models of random ramified coverings converge as the number of sheets of the covering goes to infinity. To prove this, we develop general tools in order to study the limits of families of random matrices invariant by the symmetric group. This allows us to generalize ideas, developped by Thierry Lévy in order to study the planar Yang-Mills measure with the unitary structure group, to the setting where the structure group is the symmetric group
Méliot, Pierre-Loïc. „Partitions aléatoires et théorie asymptotique des groupes symétriques, des algèbres d'Hecke et des groupes de Chevalley finis“. Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00587770.
Der volle Inhalt der QuelleLancien, Cécilia. „High dimension and symmetries in quantum information theory“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1077/document.
Der volle Inhalt der QuelleIf a one-phrase summary of the subject of this thesis were required, it would be something like: miscellaneous large (but finite) dimensional phenomena in quantum information theory. That said, it could nonetheless be helpful to briefly elaborate. Starting from the observation that quantum physics unavoidably has to deal with high dimensional objects, basically two routes can be taken: either try and reduce their study to that of lower dimensional ones, or try and understand what kind of universal properties might precisely emerge in this regime. We actually do not choose which of these two attitudes to follow here, and rather oscillate between one and the other. In the first part of this manuscript (Chapters 5 and 6), our aim is to reduce as much as possible the complexity of certain quantum processes, while of course still preserving their essential characteristics. The two types of processes we are interested in are quantum channels and quantum measurements. In both cases, complexity of a transformation is measured by the number of operators needed to describe its action, and proximity of the approximating transformation towards the original one is defined in terms of closeness between the two outputs, whatever the input. We propose universal ways of achieving our quantum channel compression and quantum measurement sparsification goals (based on random constructions) and prove their optimality. Oppositely, the second part of this manuscript (Chapters 7, 8 and 9) is specifically dedicated to the analysis of high dimensional quantum systems and some of their typical features. Stress is put on multipartite systems and on entanglement-related properties of theirs. We essentially establish the following: as the dimensions of the underlying spaces grow, being barely distinguishable by local observers is a generic trait of multipartite quantum states, and being very rough approximations of separability itself is a generic trait of separability relaxations. On the technical side, these statements stem mainly from average estimates for suprema of Gaussian processes, combined with the concentration of measure phenomenon. In the third part of this manuscript (Chapters 10 and 11), we eventually come back to a more dimensionality reduction state of mind. This time though, the strategy is to make use of the symmetries inherent to each particular situation we are looking at in order to derive a problem-dependent simplification. By quantitatively relating permutation symmetry and independence, we are able to show the multiplicative behavior of several quantities showing up in quantum information theory (such as support functions of sets of states, winning probabilities in multi-player non-local games etc.). The main tool we develop for that purpose is an adaptable de Finetti type result
Sage, Marc. „Combinatoire algébrique et géométrique des nombres de Hurwitz“. Phd thesis, Université Paris-Est, 2012. http://tel.archives-ouvertes.fr/tel-00804228.
Der volle Inhalt der QuelleComparat, Daniel. „Formation de molécules froides par photoassociation d'atomes froids de césium. Mise en évidence de forces à longue portée entre atomes froids excités de césium“. Phd thesis, Université Paris Sud - Paris XI, 1999. http://tel.archives-ouvertes.fr/tel-00002752.
Der volle Inhalt der QuelleLambert, Pierre-Henry. „Conformal symmetries of gravity from asymptotic methods, further developments“. Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209249.
Der volle Inhalt der QuelleThe first part of this thesis is devoted to the presentation of asymptotic methods (symmetries, solution space and surface charges) applied to gravity in the case of the BMS gauge in three and four spacetime dimensions.
The second part of this thesis contains the original contributions.
Firstly, it is shown that the enhancement from Lorentz to Virasoro algebra also occurs for asymptotically flat spacetimes defined in the sense of Newman-Unti. As a first application, the transformation laws of the Newman-Penrose coefficients characterizing solution space of the Newman-Unti approach are worked out, focusing on the inhomogeneous terms that contain the information about central extensions of the theory. These transformations laws make the conformal structure particularly transparent, and constitute the main original result of the thesis.
Secondly, asymptotic symmetries of the Einstein-Yang-Mills system with or without cosmological constant are explicitly worked out in a unified manner in $d$ dimensions. In agreement with a recent conjecture, a Virasoro-Kac-Moody type algebra is found not only in three dimensions but also in the four dimensional asymptotically flat case.
These two parts of the thesis are supplemented by appendices.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished