Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Suzuki polymerization.

Zeitschriftenartikel zum Thema „Suzuki polymerization“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Suzuki polymerization" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Bautista, Michael V., Anthony J. Varni, Josué Ayuso-Carrillo, Matthew C. Carson und Kevin J. T. Noonan. „Pairing Suzuki–Miyaura cross-coupling and catalyst transfer polymerization“. Polymer Chemistry 12, Nr. 10 (2021): 1404–14. http://dx.doi.org/10.1039/d0py01507e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Namgung, Ho, Jeong Jun Lee, Young Jin Gwon und Taek Seung Lee. „Synthesis of tetraphenylethylene-based conjugated microporous polymers for detection of nitroaromatic explosive compounds“. RSC Advances 8, Nr. 60 (2018): 34291–96. http://dx.doi.org/10.1039/c8ra06463f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Guo, Ting, Wenkai Zhong, Jianhua Zou, Lei Ying, Wei Yang und Junbiao Peng. „Efficient binary white light-emitting polymers grafted with iridium complexes as side groups“. RSC Advances 5, Nr. 109 (2015): 89888–94. http://dx.doi.org/10.1039/c5ra16717e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Wang, Ziyu, Cheng Wang, Yayun Fang, Hong Yuan, Yiwu Quan und Yixiang Cheng. „Color-tunable AIE-active conjugated polymer nanoparticles as drug carriers for self-indicating cancer therapy via intramolecular FRET mechanism“. Polymer Chemistry 9, Nr. 23 (2018): 3205–14. http://dx.doi.org/10.1039/c8py00329g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dai, Chunhui, Dongliang Yang, Xiao Fu, Qingmin Chen, Chengjian Zhu, Yixiang Cheng und Lianhui Wang. „A study on tunable AIE (AIEE) of boron ketoiminate-based conjugated polymers for live cell imaging“. Polymer Chemistry 6, Nr. 28 (2015): 5070–76. http://dx.doi.org/10.1039/c5py00733j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yokozawa, Tsutomu, Yutaka Nanashima, Haruhiko Kohno, Ryosuke Suzuki, Masataka Nojima und Yoshihiro Ohta. „Catalyst-transfer condensation polymerization for precision synthesis of π-conjugated polymers“. Pure and Applied Chemistry 85, Nr. 3 (12.08.2012): 573–87. http://dx.doi.org/10.1351/pac-con-12-03-13.

Der volle Inhalt der Quelle
Annotation:
Catalyst-transfer condensation polymerization, in which the catalyst activates the polymer end-group, followed by reaction with the monomer and transfer of the catalyst to the elongated polymer end-group, has made it feasible to control the molecular weight, polydispersity, and end-groups of π-conjugated polymers. In this paper, our recent progress of Kumada–Tamao Ni catalyst-transfer coupling polymerization and Suzuki–Miyaura Pd catalyst-transfer coupling polymerization is described. In the former polymerization method, the polymerization of Grignard pyridine monomers was investigated for the synthesis of well-defined n-type π-conjugated polymers. Para-type pyridine monomer, 3-alkoxy-2-bromo-5-chloromagnesiopyridine, afforded poly(pyridine-2,5-diyl) with low solubility in the reaction solvent, whereas meta-type pyridine monomer, 2-alkoxy-5-bromo-3-chloromagnesio-pyridine, yielded soluble poly(pyridine-3,5-diyl) with controlled molecular weight and low polydispersity. In Suzuki–Miyaura catalyst-transfer coupling polymerization, t-Bu3PPd(Ph)Br was an effective catalyst, and well-defined poly(p-phenylene) and poly(3-hexylthiophene) (P3HT) were obtained by concomitant use of CsF/18-crown-6 as a base in tetrahydrofuran (THF) and a small amount of water.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sugita, Hajime, Masataka Nojima, Yoshihiro Ohta und Tsutomu Yokozawa. „Unstoichiometric Suzuki–Miyaura cyclic polymerization of extensively conjugated monomers“. Polymer Chemistry 10, Nr. 10 (2019): 1182–85. http://dx.doi.org/10.1039/c8py01741g.

Der volle Inhalt der Quelle
Annotation:
Suzuki–Miyaura polycondensation of an excess of extensively conjugated aromatic dibromide with 1.0 equivalent of phenylenediboronate in the presence of tBu3PPd(0) precatalyst afforded cyclic polymers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wang, Yunshu, Shuangshuang Zhang, Laibing Wang, Wei Zhang, Nianchen Zhou, Zhengbiao Zhang und Xiulin Zhu. „The Suzuki coupling reaction as a post-polymerization modification: a promising protocol for construction of cyclic-brush and more complex polymers“. Polymer Chemistry 6, Nr. 25 (2015): 4669–77. http://dx.doi.org/10.1039/c5py00551e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sugita, Hajime, Masataka Nojima, Yoshihiro Ohta und Tsutomu Yokozawa. „Unusual cyclic polymerization through Suzuki–Miyaura coupling of polyphenylene bearing diboronate at both ends with excess dibromophenylene“. Chemical Communications 53, Nr. 2 (2017): 396–99. http://dx.doi.org/10.1039/c6cc08333a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, Haiqing, Dehui Sun, Qichen Lu, Fulei Wang, Lili Zhao, Zengfu Zhang, Xun Wang und Hong Liu. „Bio-inspired synthesis of mesoporous HfO2 nanoframes as reactors for piezotronic polymerization and Suzuki coupling reactions“. Nanoscale 11, Nr. 12 (2019): 5240–46. http://dx.doi.org/10.1039/c9nr00707e.

Der volle Inhalt der Quelle
Annotation:
Mesoporous HfO2 nanoframes were elaborately fabricated, inspired by the flexible assembly principles in the biomolecules, and were demonstrated as nanoreactors for piezotronic polymerization and Suzuki coupling reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Huang, Cheng-Wei, Wen-Yu Ji und Shiao-Wei Kuo. „Stimuli-responsive supramolecular conjugated polymer with phototunable surface relief grating“. Polymer Chemistry 9, Nr. 20 (2018): 2813–20. http://dx.doi.org/10.1039/c8py00439k.

Der volle Inhalt der Quelle
Annotation:
A facile method to synthesize azobenzene- and thymine (T)-functionalized conjugated copolymers through Suzuki coupling polymerization and click reactions and used in surface relief gratings displaying long-range-ordered interference patterns.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Yang, Po-Chih, Hua-Wen Wen, Chih-Wei Huang und Yi-Ning Zhu. „Synthesis and chemosensory properties of two-arm truxene-functionalized conjugated polyfluorene containing terpyridine moiety“. RSC Advances 6, Nr. 90 (2016): 87680–89. http://dx.doi.org/10.1039/c6ra15965f.

Der volle Inhalt der Quelle
Annotation:
We report the responsive fluorescence chemosensory phenomena of a truxene-functionalized conjugated polymer (P1) with pendant terminal terpyridine (tpy) groups as receptors for metal ions synthesized via a Suzuki polymerization reaction.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Page, Zachariah A., Feng Liu, Thomas P. Russell und Todd Emrick. „Rapid, facile synthesis of conjugated polymer zwitterions in ionic liquids“. Chem. Sci. 5, Nr. 6 (2014): 2368–73. http://dx.doi.org/10.1039/c4sc00475b.

Der volle Inhalt der Quelle
Annotation:
Ionic liquids (ILs) were utilized for the rapid air-stable Suzuki polymerization of polar zwitterionic thiophene monomers, precluding the need for volatile organic solvents, phosphine ligands and phase transfer catalysts typically used in conjugated polymer synthesis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Elmalem, Einat, Anton Kiriy und Wilhelm T. S. Huck. „Chain-Growth Suzuki Polymerization of n-Type Fluorene Copolymers“. Macromolecules 44, Nr. 22 (22.11.2011): 9057–61. http://dx.doi.org/10.1021/ma201934q.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Zhang, Hong-Hai, Yu-Xing Zhu, Weiyu Wang, Jiahua Zhu, Peter V. Bonnesen und Kunlun Hong. „Controlled synthesis of ortho, para-alternating linked polyarenes via catalyst-transfer Suzuki coupling polymerization“. Polymer Chemistry 9, Nr. 24 (2018): 3342–46. http://dx.doi.org/10.1039/c8py00070k.

Der volle Inhalt der Quelle
Annotation:
A novel class of ortho, para-alternating linked polyarenes is synthesized via catalyst-transfer Suzuki coupling polymerization with Pd2(dba)3/t-Bu3P/p-BrC6H4COPh as initiator.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Nau, Jennifer, und Thomas J. J. Müller. „Dithienothiazine Copolymers – Synthesis and Electronic Properties of Novel Redox-Active Fluorescent Polymers“. Organic Materials 03, Nr. 02 (April 2021): 293–301. http://dx.doi.org/10.1055/a-1528-6301.

Der volle Inhalt der Quelle
Annotation:
Dithienothiazine copolymers are efficiently obtained by Suzuki polymerization or in situ lithiation–Negishi polymerization in good to excellent yields. Gel permeation chromatography was applied to characterize the dispersities and degrees of polymerization of these novel materials. Thermogravimetric analysis shows that the copolymers are stable towards side-chain cleavage up to 200 °C. The materials are deep red to black amorphous solids or resins and their absorption and emission spectra in solution reveal broad absorption bands in the visible and orange to deep red luminescence upon UV excitation. According to the optical band gaps these novel copolymers qualify as a new class of low band gap organic semiconductors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Seto, Hirokazu, Takumi Tono, Akiko Nagaoka, Mai Yamamoto, Yumiko Hirohashi und Hiroyuki Shinto. „Preparation and characterization of glycopolymers with biphenyl spacers via Suzuki coupling reaction“. Organic & Biomolecular Chemistry 19, Nr. 20 (2021): 4474–77. http://dx.doi.org/10.1039/d1ob00617g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Lee, Junghoon, A.-Reum Han, Sang Myeon Lee, Dohyuk Yoo, Joon Hak Oh und Changduk Yang. „Siloxane-Based Hybrid Semiconducting Polymers Prepared by Fluoride-Mediated Suzuki Polymerization“. Angewandte Chemie 127, Nr. 15 (12.02.2015): 4740–43. http://dx.doi.org/10.1002/ange.201411557.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Lee, Junghoon, A.-Reum Han, Sang Myeon Lee, Dohyuk Yoo, Joon Hak Oh und Changduk Yang. „Siloxane-Based Hybrid Semiconducting Polymers Prepared by Fluoride-Mediated Suzuki Polymerization“. Angewandte Chemie International Edition 54, Nr. 15 (12.02.2015): 4657–60. http://dx.doi.org/10.1002/anie.201411557.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Akbayrak, Merve, und Ahmet M. Önal. „Synthesis and electrochemical polymerization of diketopyrrolopyrrole based donor–acceptor–donor monomers containing 3,6- and 2,7-linked carbazoles“. Polymer Chemistry 7, Nr. 39 (2016): 6110–19. http://dx.doi.org/10.1039/c6py01489e.

Der volle Inhalt der Quelle
Annotation:
Three new donor–acceptor–donor type monomers bearing 2,7- or 3,6-linked carbazoles as the donor unit and diketopyrrolopyrrole as the acceptor unit were synthesized via a Suzuki cross coupling reaction.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Ramaotsoa, G. Valerie, Ian Strydom, Jenny-Lee Panayides und Darren Riley. „Immobilized tetrakis(triphenylphosphine)palladium(0) for Suzuki–Miyaura coupling reactions under flow conditions“. Reaction Chemistry & Engineering 4, Nr. 2 (2019): 372–82. http://dx.doi.org/10.1039/c8re00235e.

Der volle Inhalt der Quelle
Annotation:
An immobilized triphenylphosphine scaffold was prepared by precipitation polymerization and functionalized to afford a cost-effective source of solid-supported tetrakis(triphenylphosphine)palladium(0).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Gobalasingham, Nemal S., Seyma Ekiz, Robert M. Pankow, Francesco Livi, Eva Bundgaard und Barry C. Thompson. „Carbazole-based copolymers via direct arylation polymerization (DArP) for Suzuki-convergent polymer solar cell performance“. Polymer Chemistry 8, Nr. 30 (2017): 4393–402. http://dx.doi.org/10.1039/c7py00859g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

ten Hove, Jan Bart, Jeroen Appel, Johanna M. van den Broek, Alexander J. C. Kuehne und Joris Sprakel. „Conjugated Polymer Shells on Colloidal Templates by Seeded Suzuki-Miyaura Dispersion Polymerization“. Small 10, Nr. 5 (13.11.2013): 957–63. http://dx.doi.org/10.1002/smll.201302039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Fischer, Christoph S., Christian Jenewein und Stefan Mecking. „Conjugated Star Polymers from Multidirectional Suzuki–Miyaura Polymerization for Live Cell Imaging“. Macromolecules 48, Nr. 3 (29.01.2015): 483–91. http://dx.doi.org/10.1021/ma502294n.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Yokozawa, Tsutomu, Ryosuke Suzuki, Masataka Nojima, Yoshihiro Ohta und Akihiro Yokoyama. „Precision Synthesis of Poly(3-hexylthiophene) from Catalyst-Transfer Suzuki−Miyaura Coupling Polymerization“. Macromolecular Rapid Communications 32, Nr. 11 (20.04.2011): 801–6. http://dx.doi.org/10.1002/marc.201100037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Vogt, Christian G., Sven Grätz, Stipe Lukin, Ivan Halasz, Martin Etter, Jack D. Evans und Lars Borchardt. „Direct Mechanocatalysis: Palladium as Milling Media and Catalyst in the Mechanochemical Suzuki Polymerization“. Angewandte Chemie International Edition 58, Nr. 52 (19.12.2019): 18942–47. http://dx.doi.org/10.1002/anie.201911356.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Brookins, Robert N., Kirk S. Schanze und John R. Reynolds. „Base-Free Suzuki Polymerization for the Synthesis of Polyfluorenes Functionalized with Carboxylic Acids“. Macromolecules 40, Nr. 10 (Mai 2007): 3524–26. http://dx.doi.org/10.1021/ma070070r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Yokozawa, Tsutomu, Haruhiko Kohno, Yoshihiro Ohta und Akihiro Yokoyama. „Catalyst-Transfer Suzuki−Miyaura Coupling Polymerization for Precision Synthesis of Poly(p-phenylene)“. Macromolecules 43, Nr. 17 (14.09.2010): 7095–100. http://dx.doi.org/10.1021/ma101073x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Carrillo, Josué Ayuso, Michael J. Ingleson und Michael L. Turner. „Thienyl MIDA Boronate Esters as Highly Effective Monomers for Suzuki–Miyaura Polymerization Reactions“. Macromolecules 48, Nr. 4 (10.02.2015): 979–86. http://dx.doi.org/10.1021/ma502542g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Kosaka, Kentaro, Tatsuya Uchida, Koichiro Mikami, Yoshihiro Ohta und Tsutomu Yokozawa. „AmPhos Pd-Catalyzed Suzuki–Miyaura Catalyst-Transfer Condensation Polymerization: Narrower Dispersity by Mixing the Catalyst and Base Prior to Polymerization“. Macromolecules 51, Nr. 2 (02.01.2018): 364–69. http://dx.doi.org/10.1021/acs.macromol.7b01990.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Bautista, Michael V., Anthony J. Varni, Josué Ayuso-Carrillo, Chia-Hua Tsai und Kevin J. T. Noonan. „Chain-Growth Polymerization of Benzotriazole Using Suzuki–Miyaura Cross-Coupling and Dialkylbiarylphosphine Palladium Catalysts“. ACS Macro Letters 9, Nr. 9 (28.08.2020): 1357–62. http://dx.doi.org/10.1021/acsmacrolett.0c00580.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Parrenin, Laurie, Cyril Brochon, Georges Hadziioannou und Eric Cloutet. „Low Bandgap Semiconducting Copolymer Nanoparticles by Suzuki Cross-Coupling Polymerization in Alcoholic Dispersed Media“. Macromolecular Rapid Communications 36, Nr. 20 (21.08.2015): 1816–21. http://dx.doi.org/10.1002/marc.201500324.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Kosaka, Kentaro, Yoshihiro Ohta und Tsutomu Yokozawa. „Influence of the Boron Moiety and Water on Suzuki-Miyaura Catalyst-Transfer Condensation Polymerization“. Macromolecular Rapid Communications 36, Nr. 4 (12.12.2014): 373–77. http://dx.doi.org/10.1002/marc.201400530.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Sun, Huiliang, Shuren Zhang, Yike Yang, Xiao Li, Hongmei Zhan und Yanxiang Cheng. „Excellent Control of Perylene Diimide End Group in Polyfluorene via Suzuki Catalyst Transfer Polymerization“. Macromolecular Chemistry and Physics 217, Nr. 24 (09.11.2016): 2726–35. http://dx.doi.org/10.1002/macp.201600412.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Yang, Yun Xian, Ji Ping Yang, Bing Zhou und Jing Yu Zhang. „Synthesis and Characterization of Novel Polymer of Vinyl Carbazole Bearing Thiophene Groups“. Advanced Materials Research 562-564 (August 2012): 512–15. http://dx.doi.org/10.4028/www.scientific.net/amr.562-564.512.

Der volle Inhalt der Quelle
Annotation:
Combination of vinyl carbazole and thiophene groups’ excellent thermal properties and optical properties, a novel polymer named poly(2,7-bi-2-thienyl-9-vinyl-9-H-carbazole) was synthesized via radical polymerization and Suzuki reaction. The polymer was characterized using Fourier transform infrared spectrometer(FT-IR), gel permeation chromatography(GPC), differential scanning calorimetry(DSC), and X-Ray fluorescence spectrometer(XRF). It was found that this π-conjugated polymer containing vinyl carbazole and thiophene groups gave a high glass transition temperature (Tg=251°C). This feature made poly(2,7-bi-2-thienyl-9-vinyl-9-H-carbazole) possessing an excellent thermal performance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Soo Choi, Moon, Hyung Jun Kim, Taek Seung Lee und Won Seok Lyoo. „Newly Synthesized Branch-type Aromatic Oxadiazole Polymer and Binary Fluorescence Patterning on its Film“. High Performance Polymers 19, Nr. 5-6 (Oktober 2007): 531–40. http://dx.doi.org/10.1177/0954008306081195.

Der volle Inhalt der Quelle
Annotation:
Aromatic side-chain oxadiazole polymer linked with 9,9'-dioctylfluorene was successfully synthesized via Suzuki coupling reaction. Hydroxyphenyl group was attached in the 2-position of the oxadiazole unit in the polymer side chain to control the optical properties of the polymer. We confirmed the presence of the t-butoxycarbonyl group on the hydroxyl group using thermogravimetric analysis, which was incorporated to avoid side reaction during polymerization. We also performed the simple and easy fabrication method for the dual fluorescence image using photochemical cleavage of the t-butoxycarbonyl group from the polymer to induce fluorescence color changes before and after UV irradiation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Schroot, Robert, Ulrich S. Schubert und Michael Jäger. „Poly(N-alkyl-3,6-carbazole)s via Suzuki–Miyaura Polymerization: From Macrocyclization toward End Functionalization“. Macromolecules 50, Nr. 4 (08.02.2017): 1319–30. http://dx.doi.org/10.1021/acs.macromol.7b00144.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Li, Haibo, Xiaofu Wu, Bowei Xu, Hui Tong und Lixiang Wang. „Solution-processible hyperbranched conjugated polymer nanoparticles with tunable particle sizes by Suzuki polymerization in miniemulsion“. RSC Advances 3, Nr. 23 (2013): 8645. http://dx.doi.org/10.1039/c3ra40901e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Maeyama, Katsuya, Kenji Yamashita, Hiromu Saito, Shunichi Aikawa und Yasuhiko Yoshida. „Synthesis of aromatic poly(ether ketone)s bearing optically active macrocycles through Suzuki coupling polymerization“. Polymer Journal 44, Nr. 4 (11.01.2012): 315–20. http://dx.doi.org/10.1038/pj.2011.134.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Maeyama, Katsuya, Tadashi Tsukamoto, Masanori Suzuki, Shuhei Higashibayashi und Hidehiro Sakurai. „Nanosized palladium-catalyzed Suzuki–Miyaura coupling polymerization: synthesis of soluble aromatic poly(ether ketone)s“. Polymer Journal 45, Nr. 4 (29.08.2012): 401–5. http://dx.doi.org/10.1038/pj.2012.158.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Maeyama, Katsuya, Tadashi Tsukamoto, Masanori Suzuki, Shuhei Higashibayashi und Hidehiro Sakurai. „Synthesis of Aromatic Polyketones Bearing 1,1′-Binaphthyl-2,2′-dioxy Units through Suzuki–Miyaura Coupling Polymerization“. Chemistry Letters 40, Nr. 12 (05.12.2011): 1445–46. http://dx.doi.org/10.1246/cl.2011.1445.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Reddy, Lavanya, Suja T. Dharmabalan, Kanakaraju Manupati, Ragini Yeeravalli, Lakshmi D. Vijay, Kavitha Donthiboina, Vadithe Lakshma Naik und Amitava Das. „Concise Synthesis of 1,1-Diarylvinyl Sulfones and Investigations on their Antiproliferative Activity via Tubulin Inhibition“. Anti-Cancer Agents in Medicinal Chemistry 20, Nr. 12 (07.09.2020): 1469–74. http://dx.doi.org/10.2174/1871520620666200423075630.

Der volle Inhalt der Quelle
Annotation:
Background: Discovery of small molecules that inhibit tubulin polymerization is an attractive strategy for the development of new and improved anti-proliferative agents. Objective: A series of novel 2-sulfonyl-1,1-diarylethenes were designed towards this end keeping in view the favorable chemical and pharmacological virtues of unsaturated sulfones. Methods: Rapid, convenient and efficient two-step assembly of the designed molecules was achieved by the vicinal iodo-sulfonylation-Suzuki coupling sequence. Results: As hypothesized, these compounds showed good anti-proliferative activity against different tissuespecific cancer cell lines: MCF-7, DU-145, A-549, HepG2, and HeLa. The most active compound, pnitrophenyl ring-bearing analog, exhibited an IC50 value of 0.90μM against A-549 cells. Flow cytometry studies on this derivative revealed that it arrests the cell cycle of A-549 cells at the G2/M phase. This compound exhibited molecular binding to tubulin as well as tubulin polymerization inhibition comparable to that of colchicine. Conclusion: A new class of potent, tubulin binding anticancer agents based on 1,1,-diarylvinyl sulfone scaffold has been designed and synthesized.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Otaki, Masashi, Reiji Kumai, Hajime Sagayama und Hiromasa Goto. „Synthesis of Polyazobenzenes Exhibiting Photoisomerization and Liquid Crystallinity“. Polymers 11, Nr. 2 (17.02.2019): 348. http://dx.doi.org/10.3390/polym11020348.

Der volle Inhalt der Quelle
Annotation:
While only a few studies have investigated the synthesis of main chain-type polyazobenzenes, they continue to draw an increasing amount of attention owing to their industrial applications in holography, dyes, and functional adhesives. In this study, dibromoazobenzene was prepared as a monomer for constructing azo-based π-conjugated polymers. Miyaura–Suzuki cross-coupling polymerization was conducted to develop copolymers containing an azobenzene unit as a photoisomerization block and a pyrimidine-based liquid crystal generator block. The prepared polymers exhibited thermotropic liquid crystallinity and underwent cis and trans photoisomerization upon irradiation with ultraviolet and visible light. Furthermore, the photoisomerization behavior was examined using optical absorption spectroscopy and synchrotron X-ray diffraction spectrometry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Lim, Eunhee. „Synthesis and Characterization of Carbazole-Benzothiadiazole-Based Conjugated Polymers for Organic Photovoltaic Cells with Triazole in the Main Chain“. International Journal of Photoenergy 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/607826.

Der volle Inhalt der Quelle
Annotation:
We have synthesized a series of carbazole-benzothiadiazole-triazole based copolymers, poly[(N-9′-heptadecanyl-2,7-carbazole)-co-(5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole))-co-((4-(4-butylphenyl)-3,5-diphenyl-4H-1,2,4]triazole))] (PCz3TBTz) by Suzuki coupling polymerization. The optical and electrochemical properties of the copolymers could be tuned by changing the comonomer unit of triazole from 0% to 80%. Organic photovoltaic (OPV) cells were fabricated by blending the synthesized polymers as a donor and PCBM as an acceptor. The material solubility and film morphology were improved by introducing the triazole unit in the main chain. Improved OPV device performance of 1.74% was achieved in the presence of an optimal amount of triazole moieties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Nojima, Masataka, Takeru Kamigawara, Yoshihiro Ohta und Tsutomu Yokozawa. „Catalyst‐Transfer Suzuki–Miyaura Condensation Polymerization of Stilbene Monomer: Different Polymerization Behavior Depending on Halide and Aryl Group of ArPd(tBu3P)X Initiator“. Journal of Polymer Science Part A: Polymer Chemistry 57, Nr. 3 (07.08.2018): 297–304. http://dx.doi.org/10.1002/pola.29169.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Huber, Steffen, und Stefan Mecking. „Straightforward Synthesis of Conjugated Block Copolymers by Controlled Suzuki–Miyaura Cross-Coupling Polymerization Combined with ATRP“. Macromolecules 52, Nr. 15 (31.07.2019): 5917–24. http://dx.doi.org/10.1021/acs.macromol.9b01165.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Li, Gang, Ki-Young Yoon, Xinjue Zhong, Xiaoyang Zhu und Guangbin Dong. „Efficient Bottom-Up Preparation of Graphene Nanoribbons by Mild Suzuki-Miyaura Polymerization of Simple Triaryl Monomers“. Chemistry - A European Journal 22, Nr. 27 (31.05.2016): 9116–20. http://dx.doi.org/10.1002/chem.201602007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Xing, Zeyong, Jian Zhang, Xiaohong Li, Wei Zhang, Laibing Wang, Nianchen Zhou und Xiulin Zhu. „Design and property of thermoresponsive core-shell fluorescent nanoparticles via RAFT polymerization and suzuki coupling reaction“. Journal of Polymer Science Part A: Polymer Chemistry 51, Nr. 19 (26.06.2013): 4021–30. http://dx.doi.org/10.1002/pola.26822.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Maeyama, Katsuya, Tadashi Tsukamoto, Hiroaki Kumagai, Shuhei Higashibayashi und Hidehiro Sakurai. „Synthesis of organosoluble and fluorescent aromatic polyketones bearing 1,1′-binaphthyl units through Suzuki–Miyaura coupling polymerization“. Polymer Bulletin 72, Nr. 11 (29.06.2015): 2903–16. http://dx.doi.org/10.1007/s00289-015-1443-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Lienkamp, Karen, Ingo Schnell, Franziska Groehn und Gerhard Wegner. „Polymerization of Styrene Sulfonate Ethyl Ester by ATRP: Synthesis and Characterization of Macromonomers for Suzuki Polycondensation“. Macromolecular Chemistry and Physics 207, Nr. 22 (24.11.2006): 2066–73. http://dx.doi.org/10.1002/macp.200600322.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie