Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Sustainable biopolymers“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Sustainable biopolymers" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Sustainable biopolymers"
Perera, Kalpani Y., Amit K. Jaiswal und Swarna Jaiswal. „Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications“. Foods 12, Nr. 12 (20.06.2023): 2422. http://dx.doi.org/10.3390/foods12122422.
Der volle Inhalt der QuelleSoldo, Antonio, und Marta Miletic. „Durability against Wetting-Drying Cycles of Sustainable Biopolymer-Treated Soil“. Polymers 14, Nr. 19 (10.10.2022): 4247. http://dx.doi.org/10.3390/polym14194247.
Der volle Inhalt der QuelleNazrun, Touha, Md Kamrul Hassan, Md Delwar Hossain, Bulbul Ahmed, Md Rayhan Hasnat und Swapan Saha. „Application of Biopolymers as Sustainable Cladding Materials: A Review“. Sustainability 16, Nr. 1 (19.12.2023): 27. http://dx.doi.org/10.3390/su16010027.
Der volle Inhalt der QuelleMAAN, SHEETAL, ANUSHREE JATRANA, VINAY KUMAR, MEENA SINDHU und SANCHIT MONDAL. „Chlorpyrifos Release Kinetics from Citric Acid Crosslinked Biopolymeric Nanoparticles: A Sustainable Approach“. Asian Journal of Chemistry 35, Nr. 11 (31.10.2023): 2822–28. http://dx.doi.org/10.14233/ajchem.2023.30755.
Der volle Inhalt der QuelleBaranwal, Jaya, Brajesh Barse, Antonella Fais, Giovanna Lucia Delogu und Amit Kumar. „Biopolymer: A Sustainable Material for Food and Medical Applications“. Polymers 14, Nr. 5 (28.02.2022): 983. http://dx.doi.org/10.3390/polym14050983.
Der volle Inhalt der QuellePatel, Nidhiben, und Dagnija Blumberga. „Insights of Bioeconomy: Biopolymer Evaluation Based on Sustainability Criteria“. Environmental and Climate Technologies 27, Nr. 1 (01.01.2023): 323–38. http://dx.doi.org/10.2478/rtuect-2023-0025.
Der volle Inhalt der QuelleKumar, M. Ashok, Arif Ali Baig Moghal, Kopparthi Venkata Vydehi und Abdullah Almajed. „Embodied Energy in the Production of Guar and Xanthan Biopolymers and Their Cross-Linking Effect in Enhancing the Geotechnical Properties of Cohesive Soil“. Buildings 13, Nr. 9 (10.09.2023): 2304. http://dx.doi.org/10.3390/buildings13092304.
Der volle Inhalt der QuelleAnnu, Annu, Mona Mittal, Smriti Tripathi und Dong Kil Shin. „Biopolymeric Nanocomposites for Wastewater Remediation: An Overview on Recent Progress and Challenges“. Polymers 16, Nr. 2 (21.01.2024): 294. http://dx.doi.org/10.3390/polym16020294.
Der volle Inhalt der QuelleAhmad, Noormazlinah, Abdurahman Nour Hamid und Adil M. Osman. „A Review Study on the Potential of Microalgae Biomass Producing Biopolymer Material“. Current Science and Technology 2, Nr. 2 (15.06.2023): 49–55. http://dx.doi.org/10.15282/cst.v2i2.9413.
Der volle Inhalt der QuelleLemboye, Kehinde, und Abdullah Almajed. „Effect of Varying Curing Conditions on the Strength of Biopolymer Modified Sand“. Polymers 15, Nr. 7 (28.03.2023): 1678. http://dx.doi.org/10.3390/polym15071678.
Der volle Inhalt der QuelleDissertationen zum Thema "Sustainable biopolymers"
Whitelaw, Emma L. „Catalysts for the production of sustainable biopolymers“. Thesis, University of Bath, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.577145.
Der volle Inhalt der QuelleTaddei, Lorenzo, F. Ugolini, G. P. Bonino, G. Giacomelli, C. Franceschi, M. Bertoldini, R. Sole und V. Beghetto. „Biopolymers for a more sustainable leather -154“. Verein für Gerberei-Chemie und -Technik e. V, 2019. https://slub.qucosa.de/id/qucosa%3A34185.
Der volle Inhalt der QuelleCatani, Linda. „Development and Characterization of Biopolymers“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20761/.
Der volle Inhalt der QuelleColwill, James. „A framework for supporting the sustainable adoption of biopolymers in packaging applications“. Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12820.
Der volle Inhalt der QuelleMartino, Francesca. „Study of the absorption of organic compounds on biopolymers“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24929/.
Der volle Inhalt der QuelleZhang, Qiang. „Chain conformation of cellulose, a sustainable biopolymer, and its derivatives in ionic liquid studied by small-angle neutron and X-ray scattering“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF075.
Der volle Inhalt der QuelleCellulose, a renewable bio-polymer, can replace non-biodegradable materials in various technological applications. Industrially, it is first dissolved, then processed (e.g. by spinning), and finally “regenerated” (recrystallization by adding water). However, dissolution from the very stable crystal structure requires harsh, pollutant solvents for individual chains to stay in solution. Ionic liquids (ILs) have emerged as non - polluting effective solvents. This thesis aims at the dissolution process and dissolved state checking how the two selected ILs are successful solvents, which is controversial. Our approach is to study structure and conformation of cellulose chains by X-Ray and neutron scattering, which are very weak (< 1 cm⁻¹), due to the small volume of the thin rod, the low contrast and difficult to measure due to high sensitivity to water. Chapter 1 summarizes the state of the art on solutions of cellulose in different widely industrially used solvents, in ionic liquids, and in scattering studies, light, X-rays and neutrons, showing various states of dispersion. Chapter 2 presents the preparation of the samples and the techniques. Chapter 3 reports Small Angle X rays Scattering (SAXS) studies, using high flux and narrow beam synchrotron spectrometers. We first monitored MicroCrystalline Cellulose (MCC, Degree of Polymerisation DP ≈ 200 units) in two Butyl-methyl-imidazolium based ILs: acetate (BmimAc), or Chloride (BmimCl). Different regimes are assumed from rheological studies. -In the dilute regime (0.005 – 0.02 g/g). Scattering is fitted to the form factor P(q) of a rod-like chain, surrounded by a shell of density different from the one of the solvent, with possibly a large persistence length (> 7 nm). -For larger concentrations, in yet well dissolved cases, a structure factor unveils soft interchain repulsions, without strong alignment. -At higher concentration, the scattering suggests a liquid-liquid phase separation -Finally, at the highest concentrations, non-dissolved crystals are detected at large q (WAXS), a great advantage of our technique. The coexistence with crystals was also investigated during swelling in nanocellulose crystals films or fibers, through narrow beam scanning of a concentration gradient. The effect of a small percentage of added water was tested, the IL good solvents for cellulose being quite hygroscopic. Above a few per cent of water, much stronger scattering suggests strong concentration fluctuations, or biphasic structure, useful to understand the first stages of the “regeneration” (recrystallization) step performed by adding water, to obtain the final products. Cellulose of other origin and similarly small molecular weights (in rayon, and CNC), superimpose their scattering on the one of MCC. Bacterial cellulose scattering superposes only at large q (hence a complete identity at local scale), but shows an additional strong low q upturn, due to independent aggregates. This opens the way to neutron scattering experiments using deuteriated cellulose, which is available only in a bacterial form. Chapter 4 reports the measurements of: -Small Angle Neutron Scattering (SANS) shows for low concentrations a profile similar to SAXS, allowing a complementary evaluation of the Scattering Length Density of cellulose. Using extrapolation at Zero Deuteriated Cellulose Fraction, we attempted the extraction of the intrachain function S₁(q)~P(q), the interchain function S₂(q). Difficulties appeared at low q due to the strong upturn, while high q showed agreement with the SAXS measurement of the form factor below c*. -Wide Angle Neutron Scattering (WANS) was used to track the correlations at short scale. Different solvents were used in which either the Bmim cation, or the anion Ac, or both, were deuteriated using our own synthesis processes. Comparisons enable us to discuss about possible absorption of the acetate anions on the cellulose chains
Jesus, Sónia Alexandra Rodrigues. „Novas bases texteis para novas exigências sociais. A sustentabilidade das fibras sintéticas“. Master's thesis, Faculdade de Arquitectura de Lisboa, 2011. http://hdl.handle.net/10400.5/4710.
Der volle Inhalt der QuelleA moda é um mecanismo veloz, efémero e sôfrego de novi¬dade. Ao longo da história da moda e do design, os têxteis têm sido intimamente relacionados com a inovação a nível científico e industrial. Actualmente, as novas exigências sociais e a evolução tec¬nológica permitem a concepção de ideias e materiais nunca antes imaginados. Alega-se que o vestuário se está a transformar na expressão de um estilo de vida consciencioso e de uma personalida¬de onde coexistem preocupações com o ambiente e com a individualidade, e a realização de desejos e necessidades humanas. Deste modo, é crucial a investigação de soluções para novas bases têxteis que correspondam às exigências de sustentabilidade, funcionalidade e estética, quer do consumi¬dor quer do designer de moda. Em conformidade, este trabalho de investigação foca a análise de algumas fibras têxteis naturais e manufactura¬das, sob o ponto de vista das suas propriedades, aplicações e processamento, procurando esclarecer e desmitificar o carácter ecológico de ambas. Em consonância, é feita a aná¬lise comparativa do processamento do algodão e do lyocel, permitindo observar a existência de novas fibras manufactu¬radas que se apresentam como uma alternativa sustentável para a produção de novas bases têxteis para produtos de moda. Desta forma, a presente dissertação pretende realçar o carácter sustentável de novas bases têxteis, desmitifican¬do o carácter ecológico de algumas fibras naturais, como o algodão, face à carga poluente que advém do seu processo de tranformação.
ABSTRACT - Fashion is fast, ephemerous and longs for innovation. Throu¬ghout the history of both fashion and design, textiles have been intimately connected with scientific and industrial inno¬vation. Nowadays, new social demands and technological evolu¬tion have allowed a conception of ideas and materials never imagined before. It is alleged that clothing is becoming the voice of a conscien¬tious lifestyle and of a personality where environmental and individuality concerns, human needs and the fulfillment of desires all coexist. As such, it is crucial to explore new textile structures so¬lutions that correspond to the demands for sustainability, functionality and aesthetics of both the fashion designer and the consumer. Accordingly, this research study focuses on the analysis of the properties, applications and processing of some natural and manufactured textile fibers, looking forward to enlighten and demystify their ecological character. In consonance, a comparative analysis of cotton and lyocell processing has been done, allowing the observation of the existence of new manufactured fibers that can be envisaged as a sustainable alternative for the production of new textile structures for fashion products. Hence, this dissertation aims to highlight the sustainable character of these new textile structures, demystifying the ecological character of some natural fibers, such as cotton, when confronted with the pollution that re¬sults from its transformation process.
Gransinigh, Sara. „Research and development of manufacturing protocols and new binders for the industrial production of bio-composites materials“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24404/.
Der volle Inhalt der QuelleOliveira, Flávia Natalino. „Evaluation of sustainable biopolymer as depressant for iron ore cationic reverse flotation“. Universidade Federal de Viçosa, 2014. http://www.locus.ufv.br/handle/123456789/9695.
Der volle Inhalt der QuelleMade available in DSpace on 2017-03-06T13:09:17Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1178853 bytes, checksum: 41406075f1623938e43098a7e5a491d4 (MD5) Previous issue date: 2014-03-31
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
A flotação catiônica reversa do minério de ferro é um processo de separação usado na mineralogia para separar compostos de ferro de outros compostos indesejáveis presentes no minério de ferro. Nesse processo, o amido é usado como depressor e amina como coletor. A compreensão do mecanismo de interação existente entre os reagentes usados no processo de flotação e o minério de ferro é de fundamental importância para avanços na tecnologia de enriquecimento de minério de ferro, bem como no desenvolvimento de novos agentes químicos usados no processo para esse fim. Esse trabalho está dividido em dois capítulos: i) O primeiro tem como principal objetivo avaliar algumas características do amido que podem influenciar no processo de flotação, como, tamanho da cadeia polimérica e grupo terminal redutor (GTR) presentes na molécula do depressor e ainda avaliar, por meio de técnicas espectroscópicas os minérios flotados e afundados dos testes de flotação usando dextrina, amido solúvel, amido ceroso e amido de milho industrial como agentes depressores. ii) O segundo capítulo tem como principal objetivo desenvolver um novo depressor (XMC), extraído de resíduo de fibra de milho, para substituir o amido no processo de flotação do minério de ferro. Os estudos do capítulo 1 mostraram que moléculas de amido menores resultam piores desempenhos na flotação e que a presença do GTR começa a ser positivamente influente no desempenho da flotação quando se usa moléculas pequenas, em que esse grupo está em maiores quantidades (DE = 10,6% glicose). Uma análise dos espectros de DRIFT baseada na intensidade da banda da hematita não mostrou nada além de que as amostras de concentrado contém mais hematita que as amostras de flotado, como já era esperado. A análise de espectroscopia Raman não possibilitou a observação de qualquer banda característica dos depressores usados, uma vez que só foi sensível à fase inorgânica. Os estudos do capítulo 2 mostraram o grande potencial da XMC em substituição ao amido no processo de flotação, por excelentes resultados de flotação e por ser uma alternativa sustentável, oferecendo uma destinação nobre a um resíduo industrial. Além da possibilidade em remover o amido parcial ou totalmente do processo industrial, preservando-o para a cadeia alimentar humana e animal.
The reverse cationic flotation of iron ore is a separation process used in mineralogy to separate iron compounds from others compounds present in iron ore. In this process, the starch is used as depressant and amine as collector. The knowledge of interaction mechanism between the reagents used in the flotation process and iron ore has a fundamental importance to advance iron ore enrichment technology, as well as to the development of new chemicals used in the process. This work is divided into two chapters: i) The first chapter aims to evaluate some characteristics of starch that can influence the flotation process, such as, size of the polymer chain and reducing end group (REG) present in the depressant molecule. It also aims to evaluate, by spectroscopic techniques, the reject and concentrate minerals from flotation tests using dextrin, soluble starch, waxy starch and industrial corn starch as depressant agents. ii) The second chapter aims to develop a new depressant (XMC), extracted from corn fiber residue (CFR), to replace the starch in iron ore flotation process. The results in Chapter 1 showed that short chain depressant results in worse flotation performance. The amount of REG has no effect on flotation performance up to a dextrose equivalent value of 9.2% glucose. Analysis of the DRIFT spectra based on the intensity of the hematite band only showed the concentrate samples contain more hematite than reject samples, as expected. Using Raman spectroscopy analysis, it was not possible to observe any characteristic band of the depressants used, since the Raman was only sensitive to inorganic phase. The studies in Chapter 2 showed the great potential of XMC replacing starch in flotation process, because of the excellent flotation results and the XMC be a sustainable alternative, offering a prime destination to an industrial waste. Besides, it is possible to remove the starch of industrial process partially or totally, preserving it for human and animal food chain.
Cot, Gores Jaume. „Recycling of Wastes and Thermal Energy Storage, Two Different Ways to Improve Our Environment“. Doctoral thesis, Universitat de Lleida, 2012. http://hdl.handle.net/10803/81419.
Der volle Inhalt der QuelleEsta tesis es una contribución a generar una economía eficiente en recursos y energía por medio de reacciones químicas. En particular esta memoria presenta por una parte, un proceso rápido y eficaz para la recuperación de las sales de cromo(III) y la obtención de biopolímeros de alto valor añadido de los residuos cromados provenientes de la industria del curtido. El proceso de descromación está basado en la oxidación del cromo(III) a cromo(VI) usando peróxido de hidrógeno en medio básico. Además, la misma reacción de oxidación se ha utilizado para la recuperación de las sales de cromo(III) de los efluentes cromados. Por otra parte, las reacciones termoquímicas (procesos de adsorción química y las reacciones químicas sólido-gas) abren una nueva posibilidad para el almacenamiento térmico de energía solar por periodos largos de tiempo en zonas residenciales. Este trabajo aporta una revisión sobre la investigación experimental de sistemas de almacenamiento térmico con materiales termoquímicos (TCM). Además, la memoria presenta el trabajo realizado en la caracterización experimental de MgSO4•7H2O, Al2(SO4)3•18H2O, CaCl2•2H2O and MgCl2•6H2O para la determinación de su aplicación como TCM en un sistema estacional de almacenamiento térmico de energía solar. Los resultados experimentales indicaron que los cloruros pueden liberar calor al sistema de calefacción residencial a temperaturas más altas que los sulfatos.
The current thesis is a contribution to create energy and resource efficient economy by means of chemical reactions. In particular, the thesis presents, on one hand, a quick and effective procedure for recovery of chromium (III) salts and isolation of high added value collagenic biopolymners from chromium(III) tanned solid wastes. The dechroming process is based on the oxidation of chromium(III) to chromium using hydrogen peroxide in alkaline medium. Additionally, the same oxidation reaction was used for recovery of chromium(III) salts from tannery effluents. On the other hand, thermochemical reactions (chemical adsorption processes and solid-gas chemicals reactions) open a new way for long-term solar heat storage in residential areas. The present work gives a review of the experimental research on thermal energy storage systems with thermochemical materials (TCM). Moreover, this work describes the experimental characterisation of MgSO4•7H2O, Al2(SO4)3•18H2O, CaCl2•2H2O and MgCl2•6H2O to determine is suitability for application in a seasonal solar heat storage system. Experimental results showed that the chlorides can deliver heat to the residential heating system at a higher temperature than the sulphates.
Bücher zum Thema "Sustainable biopolymers"
Zehra, Saman, Mohammad Mobin und Chandrabhan Verma. Biopolymers in Sustainable Corrosion Inhibition. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003400059.
Der volle Inhalt der QuellePlackett, David, Hrsg. Biopolymers - New Materials for Sustainable Films and Coatings. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119994312.
Der volle Inhalt der QuellePlackett, D. V. Biopolymers: New materials for sustainable films and coatings. Chichester, West Sussex, UK : Hoboken, NJ: Wiley, 2011.
Den vollen Inhalt der Quelle finden1965-, Jiménez Alfonso, und Zaikov Gennadiĭ Efremovich, Hrsg. Recent advances in research on biodegradable polymers and sustainable composites. New York: Nova Science Publishers, 2009.
Den vollen Inhalt der Quelle findenBiopolymers in Sustainable Corrosion Inhibition. CRC Press LLC, 2024.
Den vollen Inhalt der Quelle findenBiopolymers in Sustainable Corrosion Inhibition. Taylor & Francis Group, 2024.
Den vollen Inhalt der Quelle findenWarangkana, Sudarshan Singh;. Biopolymers Towards Green and Sustainable Development. Bentham Science Publishers, 2022.
Den vollen Inhalt der Quelle findenChunglok, Warangkana. Biopolymers Towards Green and Sustainable Development. Bentham Science Publishers, 2022.
Den vollen Inhalt der Quelle findenWarangkana, Sudarshan Singh;. Biopolymers Towards Green and Sustainable Development. Bentham Science Publishers, 2022.
Den vollen Inhalt der Quelle findenPlackett, David. Biopolymers: New Materials for Sustainable Films and Coatings. Wiley & Sons, Incorporated, John, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Sustainable biopolymers"
Ismael, Mustafa K. „Sustainable Biopolymers“. In Handbook of Biodegradable Materials, 1–31. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-83783-9_15-2.
Der volle Inhalt der QuelleIsmael, Mustafa K. „Sustainable Biopolymers“. In Handbook of Biodegradable Materials, 1–31. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-83783-9_15-1.
Der volle Inhalt der QuelleIsmael, Mustafa K. „Sustainable Biopolymers“. In Handbook of Biodegradable Materials, 319–49. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-09710-2_15.
Der volle Inhalt der QuelleAbdul Khalil, H. P. S., M. R. Nurul Fazita und N. Mohd Nurazzi. „Seaweed-Based Biopolymers for Sustainable Applications“. In Biopolymers and Biopolymer Blends, 284–307. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003416043-8.
Der volle Inhalt der QuelleKumawat, Tarun Kumar, Varsha Kumawat, Swati Sharma, Vishnu Sharma, Anjali Pandit, Nirat Kandwani und Manish Biyani. „Sustainable Green Methods for the Extraction of Biopolymers“. In Biopolymers, 73–110. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98392-5_5.
Der volle Inhalt der QuelleMehta, Jimmy, Prateek Mittal und Pallav Gupta. „Biopolymers and Sustainable Biopolymers Based Composites“. In Fabrication Techniques and Machining Methods of Advanced Composite Materials, 101–18. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003427735-6.
Der volle Inhalt der QuelleMasroor, Sheerin. „Overview of Biopolymers“. In Biopolymers in Sustainable Corrosion Inhibition, 1–13. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003400059-1.
Der volle Inhalt der QuelleBhasney, Siddharth Mohan, Shubhranshu Ranjan Das, Arbind Prasad, Bidyanand Mahto und Sivasakthivel Thangavel. „Recycling of biopolymers“. In Biodegradable Waste Processing for Sustainable Developments, 272–98. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003502012-13.
Der volle Inhalt der QuelleAhmed, Iqbal, Hira Zulfiqar, Ijaz Hussain, Muhammad Waqas, Muhammad Furqan Farooq und Hunain Zulfiqar. „Green Biopolymers in Sustainable Packaging“. In Green Biopolymers for Packaging Applications, 161–92. Boca Raton: CRC Press, 2024. https://doi.org/10.1201/9781003455356-7.
Der volle Inhalt der QuelleAthwal, Shinar, Swati Sharma, Shreya Gupta, Ashok Kumar Nadda, Arun Gupta und Mohamed Saad Bala Husain. „Sustainable Biodegradation and Extraction of Keratin with Its Applications“. In Handbook of Biopolymers, 1–35. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6603-2_27-1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Sustainable biopolymers"
Sandoval, Neyder A., Edwin A. Murillo und Sophia A. Tsipas. „Evaluation Of Biopolymers To Produce Metal Or Metal-Ceramic Feedstocks For Eco-Sustainable Composite Extrusion Modelling“. In Euro Powder Metallurgy 2024 Congress & Exhibition. EPMA, 2024. http://dx.doi.org/10.59499/ep246282804.
Der volle Inhalt der QuelleNicolae, Madalina, Claire Lefez, Anne Roudaut, Samuel Huron, Jürgen Steimle und Marc Teyssier. „SoftBioMorph: Fabricating Sustainable Shape-changing Interfaces using Soft Biopolymers“. In DIS '24: Designing Interactive Systems Conference. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3643834.3661610.
Der volle Inhalt der QuelleRamachandran, Asha, Navdeep Kaur Dhami und Abhijit Mukherjee. „Sustainable utilization of biopolymers and biocement in aggregation of granular materials“. In Fifth International Conference on Sustainable Construction Materials and Technologies. Coventry University and The University of Wisconsin Milwaukee Centre for By-products Utilization, 2019. http://dx.doi.org/10.18552/2019/idscmt5064.
Der volle Inhalt der QuelleRonzano, Anna, Roberta Stefanini, Giulia Borghesi und Giuseppe Vignali. „Agricultural waste as a source of innovative and compostable composite biopolymers for food packaging: a scientific review“. In the 7th International Food Operations and Processing Simulation Workshop. CAL-TEK srl, 2021. http://dx.doi.org/10.46354/i3m.2021.foodops.005.
Der volle Inhalt der QuelleTrambitski, Yahor, Olga Kizinievič und Viktor Kizinievič. „Designing of Sustainable Building Material Made of Non-Fired Clay with Various Biopolymers“. In International Conference EcoBalt. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/proceedings2023092056.
Der volle Inhalt der QuelleMASROUR, Ilham. „Naturally Strengthening Rammed Earth: The Promising Potential of Biopolymers“. In Mediterranean Architectural Heritage. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903117-25.
Der volle Inhalt der QuelleMASROUR, Ilham. „Restoration of the Kasbah of Boulaouane: An innovative approach using eco-friendly geopolymer and biopolymer composite materials“. In Vernacular Architecture: Support for Territorial Development, 180–87. Materials Research Forum LLC, 2025. https://doi.org/10.21741/9781644903391-21.
Der volle Inhalt der QuelleRackov, Sanja, Milan Vraneš, Tamara Erceg und Branka Pilić. „Development of Nanomaterials for Sustainable Food Packaging Applications“. In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.148r.
Der volle Inhalt der QuellePesce, Cecilia, Giovanni Pesce, Marco Molinari und Alan Richardson. „Customising Microstructural and Mineralogical Characteristics of Hydrated Lime Using Biopolymers“. In 4th International Conference on Bio-Based Building Materials. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/www.scientific.net/cta.1.353.
Der volle Inhalt der QuelleHouston, Kirsty Ann, Niall Fleming, Julya Jennifer Bonkat, Havard Kaarigstad, Jonathan Barclay, Russell Watson und Patrick Viste. „Innovative Water Based Mud Design to Improve Formation Damage Results on Mariner Field“. In SPE International Conference and Exhibition on Formation Damage Control. SPE, 2022. http://dx.doi.org/10.2118/208844-ms.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Sustainable biopolymers"
Possidónio, Catarina, Ana Rita Farias, Samuel Domingos, Bernardo Cruz, Sílvia Luís und Ana Loureiro. Exploring supply-side barriers for commercialization of new biopolymer production technologies: A systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Mai 2023. http://dx.doi.org/10.37766/inplasy2023.5.0076.
Der volle Inhalt der Quelle