Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Surveillance distribuée.

Zeitschriftenartikel zum Thema „Surveillance distribuée“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Surveillance distribuée" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

C N, Dr Sowmyarani, Lavanya Naik und Sangeetha S. „Security Analysis on Surveillance System“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 7 (31.07.2023): 2195–201. http://dx.doi.org/10.22214/ijraset.2023.55016.

Der volle Inhalt der Quelle
Annotation:
Abstract: Nowadays in every organization, office, home, shops it has become mandatory to have surveillance system. This is for safety purpose in order to avoid theft and in turn achieve security. Most of the surveillance systems are managed and monitored by third parties as they are the ones who distribute them to various organizations. Meanwhile in some cases, for example in hospital, patient’s data might be sent to third parties in order to find best diagnosis or medicines for the disease that is increasing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Velastin, S. A. „Editorial: Intelligent distributed surveillance systems“. IEE Proceedings - Vision, Image, and Signal Processing 152, Nr. 2 (2005): 191. http://dx.doi.org/10.1049/ip-vis:20059045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Detmold, Henry, Anton van den Hengel, Anthony Dick, Katrina Falkner, David S. Munro und Ron Morrison. „Middleware for Distributed Video Surveillance“. IEEE Distributed Systems Online 9, Nr. 2 (Februar 2008): 1. http://dx.doi.org/10.1109/mdso.2008.7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pan, Jin Xue. „A Load Balancing Mechanism for Video Surveillance System“. Advanced Materials Research 1049-1050 (Oktober 2014): 2079–83. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.2079.

Der volle Inhalt der Quelle
Annotation:
In recent years, with the development of video surveillance systems, the cluster and load balancing technology need be applied to improve the system performance and the quality of service. In this paper, on the basis of common load balancing algorithms, considering the characteristics of the video surveillance system, design a new load balancing scheduling mechanism, by improving the weighted round robin algorithm and introducing the nodes cooperation strategy. The testing results show that the new mechanism can distribute the loads more reasonably and make use of the server resources more effectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Valera, M., und S. A. Velastin. „Intelligent distributed surveillance systems: a review“. IEE Proceedings - Vision, Image, and Signal Processing 152, Nr. 2 (2005): 192. http://dx.doi.org/10.1049/ip-vis:20041147.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kavalionak, Hanna, Claudio Gennaro, Giuseppe Amato, Claudio Vairo, Costantino Perciante, Carlo Meghini und Fabrizio Falchi. „Distributed Video Surveillance Using Smart Cameras“. Journal of Grid Computing 17, Nr. 1 (25.10.2018): 59–77. http://dx.doi.org/10.1007/s10723-018-9467-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Comaniciu, Dorin, Fabio Berton und Visvanathan Ramesh. „Adaptive Resolution System for Distributed Surveillance“. Real-Time Imaging 8, Nr. 5 (Oktober 2002): 427–37. http://dx.doi.org/10.1006/rtim.2002.0298.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Pennisi, A., F. Previtali, F. Ficarola, D. D. Bloisi, L. Iocchi und A. Vitaletti. „Distributed Sensor Network for Multi-robot Surveillance“. Procedia Computer Science 32 (2014): 1095–100. http://dx.doi.org/10.1016/j.procs.2014.05.538.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Remagnino, P., A. I. Shihab und G. A. Jones. „Distributed intelligence for multi-camera visual surveillance“. Pattern Recognition 37, Nr. 4 (April 2004): 675–89. http://dx.doi.org/10.1016/j.patcog.2003.09.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Farley, Ryan, und Xinyuan Wang. „Roving bugnet: Distributed surveillance threat and mitigation“. Computers & Security 29, Nr. 5 (Juli 2010): 592–602. http://dx.doi.org/10.1016/j.cose.2009.12.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Bramberger, M., A. Doblander, A. Maier, B. Rinner und H. Schwabach. „Distributed Embedded Smart Cameras for Surveillance Applications“. Computer 39, Nr. 2 (Februar 2006): 68–75. http://dx.doi.org/10.1109/mc.2006.55.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Galloway, Alexander R. „“Carnivore personal edition”: exploring distributed data surveillance“. AI & SOCIETY 20, Nr. 4 (09.03.2006): 483–92. http://dx.doi.org/10.1007/s00146-006-0034-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Ivanov, Yurii, Borys Sharov, Nazar Zalevskyi und Ostap Kernytskyi. „Software System for End-Products Accounting in Bakery Production Lines Based on Distributed Video Streams Analysis“. Advances in Cyber-Physical Systems 7, Nr. 2 (16.12.2022): 101–7. http://dx.doi.org/10.23939/acps2022.02.101.

Der volle Inhalt der Quelle
Annotation:
Among the main requirements of modern surveillance systems are stability in the face of negative influences and intellectualization. The purpose of intellectualization is that the surveillance system should perform not only the main functions such as monitoring and stream recording but also have to provide effective stream processing. The requirement for this processing is that the system operation has to be automated, and the operator's influence should be minimal. Modern intelligent surveillance systems require the development of grouping methods. The context of the grouping method here is associated with a decomposition of the target problem. Depending on the purpose of the system, the target problem can represent several subproblems, each of which usually accomplishes by artificial intelligence or data mining methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

ZAVOLODKO, Ganna, Daria PAVLOVA, Yana KOLESNIKOVA und Maksym SUKMANSKYI. „INTERSTAGE OPTIMIZATION OF DATA PROCESSING OF DISTRIBUTED AIRSPACE MONITORING SYSTEMS“. ITSynergy, Nr. 1 (30.11.2021): 58–65. http://dx.doi.org/10.53920/its-2021-1-7.

Der volle Inhalt der Quelle
Annotation:
The synthesis and analysis of the data processing optimal structure of survey radar surveillance systems are carried out in the work. By creating a temporary information database of signaling data for the required number of surveillance radar surveillance system, each element of which stores signaling data and quality indicators and parameters of their production, it is possible to carry out interstage optimization of airspace surveillance data processing based on Neumann-Pearson test. It will be possible to formulate the preparation of information messages faster within the current information, which will significantly affect the quality of the decision.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Benaskeur, Abderrezak, Alaa Khamis und Hengameh Irandoust. „Cooperation in distributed surveillance systems for dense regions“. International Journal of Intelligent Defence Support Systems 4, Nr. 1 (2011): 20. http://dx.doi.org/10.1504/ijidss.2011.037806.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Valera, M., S. A. Velastin, A. Ellis und J. Ferryman. „Communication Mechanisms and Middleware for Distributed Video Surveillance“. IEEE Transactions on Circuits and Systems for Video Technology 21, Nr. 12 (Dezember 2011): 1795–809. http://dx.doi.org/10.1109/tcsvt.2011.2133850.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Kim, Junguk L., und Hector J. Hernandez. „A network surveillance protocol for distributed database systems“. Data & Knowledge Engineering 6, Nr. 5 (September 1991): 409–20. http://dx.doi.org/10.1016/0169-023x(91)90010-u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

McClure, Roderick J., und Karin Mack. „Injury surveillance as a distributed system of systems“. Injury Prevention 22, Suppl 1 (29.12.2015): i1—i2. http://dx.doi.org/10.1136/injuryprev-2015-041788.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Albano, Pietro, Andrea Bruno, Bruno Carpentieri, Aniello Castiglione, Arcangelo Castiglione, Francesco Palmieri, Raffaele Pizzolante, Kangbin Yim und Ilsun You. „Secure and distributed video surveillance via portable devices“. Journal of Ambient Intelligence and Humanized Computing 5, Nr. 2 (19.04.2013): 205–13. http://dx.doi.org/10.1007/s12652-013-0181-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Hossain, M. Shamim. „QoS-aware service composition for distributed video surveillance“. Multimedia Tools and Applications 73, Nr. 1 (01.02.2013): 169–88. http://dx.doi.org/10.1007/s11042-012-1312-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Chang, Ray-I., Te-Chih Wang, Chia-Hui Wang, Jen-Chang Liu und Jan-Ming Ho. „Effective distributed service architecture for ubiquitous video surveillance“. Information Systems Frontiers 14, Nr. 3 (14.08.2010): 499–515. http://dx.doi.org/10.1007/s10796-010-9255-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Watfa, Mohamed K., Leena Abdullah Alghamdi und Manal Omer Bin Hamza. „Optimal deployment of a distributed IoT acoustic surveillance system“. International Journal of Sensor Networks 37, Nr. 1 (2021): 1. http://dx.doi.org/10.1504/ijsnet.2021.10041423.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Hamza, Manal Omer Bin, Leena Abdullah Alghamdi und Mohamed K. Watfa. „Optimal deployment of a distributed IoT acoustic surveillance system“. International Journal of Sensor Networks 37, Nr. 1 (2021): 1. http://dx.doi.org/10.1504/ijsnet.2021.117960.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Wettergren, Thomas A., und Russell Costa. „Optimal Planning of Distributed Sensor Layouts for Collaborative Surveillance“. International Journal of Distributed Sensor Networks 9, Nr. 4 (April 2013): 145496. http://dx.doi.org/10.1155/2013/145496.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Fujita, Hiroyuki, und Kazuyuki Aihara. „A Distributed Surveillance and Protection System in Living Organisms“. IEEJ Transactions on Electronics, Information and Systems 107, Nr. 11 (1987): 1042–48. http://dx.doi.org/10.1541/ieejeiss1987.107.11_1042.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Wang, Xiaopeng, und Zihuai Lin. „Microwave Surveillance Based on Ghost Imaging and Distributed Antennas“. IEEE Antennas and Wireless Propagation Letters 15 (2016): 1831–34. http://dx.doi.org/10.1109/lawp.2016.2538787.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Zhang, Guoxian, Gregory K. Fricke und Devendra P. Garg. „Spill Detection and Perimeter Surveillance via Distributed Swarming Agents“. IEEE/ASME Transactions on Mechatronics 18, Nr. 1 (Februar 2013): 121–29. http://dx.doi.org/10.1109/tmech.2011.2164578.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Saptharishi, M., C. Spence Oliver, C. P. Diehl, K. S. Bhat, J. M. Dolan, A. Trebi-Ollennu und P. K. Khosla. „Distributed surveillance and reconnaissance using multiple autonomous ATVs: CyberScout“. IEEE Transactions on Robotics and Automation 18, Nr. 5 (Oktober 2002): 826–36. http://dx.doi.org/10.1109/tra.2002.804501.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Xue Wang, Sheng Wang und Daowei Bi. „Distributed Visual-Target-Surveillance System in Wireless Sensor Networks“. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39, Nr. 5 (Oktober 2009): 1134–46. http://dx.doi.org/10.1109/tsmcb.2009.2013196.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Mostafaei, Habib, Morshed U. Chowdhury und Mohammad S. Obaidat. „Border Surveillance With WSN Systems in a Distributed Manner“. IEEE Systems Journal 12, Nr. 4 (Dezember 2018): 3703–12. http://dx.doi.org/10.1109/jsyst.2018.2794583.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Coifman, Benjamin A., und Ramachandran Mallika. „Distributed surveillance on freeways emphasizing incident detection and verification“. Transportation Research Part A: Policy and Practice 41, Nr. 8 (Oktober 2007): 750–67. http://dx.doi.org/10.1016/j.tra.2006.12.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Velastin, Sergio A., Benny Lo und Jie Sun. „A flexible communications protocol for a distributed surveillance system“. Journal of Network and Computer Applications 27, Nr. 4 (November 2004): 221–53. http://dx.doi.org/10.1016/j.jnca.2003.11.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Walter, B. „A turnable protocol for symmetric surveillance in distributed systems“. ACM SIGCOMM Computer Communication Review 16, Nr. 3 (August 1986): 368–76. http://dx.doi.org/10.1145/1013812.18213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Rahman, Sk Md Mizanur, M. Anwar Hossain, Mohammad Mehedi Hassan, Atif Alamri, Abdullah Alghamdi und Mukaddim Pathan. „Secure privacy vault design for distributed multimedia surveillance system“. Future Generation Computer Systems 55 (Februar 2016): 344–52. http://dx.doi.org/10.1016/j.future.2014.10.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Lo Presti, Liliana, Stan Sclaroff und Marco La Cascia. „Path Modeling and Retrieval in Distributed Video Surveillance Databases“. IEEE Transactions on Multimedia 14, Nr. 2 (April 2012): 346–60. http://dx.doi.org/10.1109/tmm.2011.2173323.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Nam, Yunyoung, Sangjin Hong und Seungmin Rho. „Data modeling and query processing for distributed surveillance systems“. New Review of Hypermedia and Multimedia 19, Nr. 3-4 (Dezember 2013): 299–327. http://dx.doi.org/10.1080/13614568.2013.849762.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Chang, Che-Cheng, und Jichiang Tsai. „Distributed collaborative surveillance system based on leader election protocols“. IET Wireless Sensor Systems 6, Nr. 6 (01.12.2016): 198–205. http://dx.doi.org/10.1049/iet-wss.2015.0030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Mnatsakanyan, Zaruhi R., Howard S. Burkom, Mohammad R. Hashemian und Michael A. Coletta. „Distributed information fusion models for regional public health surveillance“. Information Fusion 13, Nr. 2 (April 2012): 129–36. http://dx.doi.org/10.1016/j.inffus.2010.12.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Ramos, Fernando M. S., und Filipe M. Patrı́cio. „Application of Distributed Platforms in a Video Surveillance System“. Real-Time Imaging 7, Nr. 5 (Oktober 2001): 447–55. http://dx.doi.org/10.1006/rtim.2000.0212.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Svyd, I. V., und S. V. Starokozhev. „Distributed processing of radar information in airspace surveillance systems“. Radiotekhnika, Nr. 212 (28.03.2023): 155–65. http://dx.doi.org/10.30837/rt.2023.1.212.15.

Der volle Inhalt der Quelle
Annotation:
The work is dedicated to the analysis of the quality of combining assessments of the radar signals and airborne objects detections in the implementation of distributed processing of radar information of airspace surveillance systems. The main sources of radar information about the air situation in the airspace control system are primary surveillance radars, secondary radar systems and identification systems on the basis of "friend or foe". It should be noted that the analysis of the information security of single-position radars shows their vulnerability in a wide range of unintentional and intentional interference, as well as determining their location. This is due to the ease of detection of the emitting transmitter of the probing signal in single-position radars. It led to the main disadvantage of single-position radars – low noise immunity and low survivability. The transition to a network of radar systems can significantly reduce the impact of deliberately directed interference. It also allows the use of methods for distributed processing of radar information in airspace surveillance systems. Analysis of the effectiveness of information support algorithms based on distributed processing of radar information of airspace surveillance systems, taking into account the final result, makes it possible to detect airborne objects using a packet of binary-quantized signals, taking into account two algorithms for combining detection results: channel accumulation and combining results; association of channel solutions and accumulation. It shows following: – the quality of consumer information support based on the proposed structure is much higher compared to the used radar information processing structure; the quality of information support for consumers has the best performance when using the signal processing method based on the accumulation of signals with the subsequent combination of detection results; the availability factor of the aircraft transponder significantly affects the quality of information support, already at P0<0.9 the use of integer logic for combining detection information is undesirable.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Cheng, Xiaoling, Mengxi Xu, Xijun Yan, Yang Yang, Yue Xu und Yinglan Ruan. „A Design Pattern of IAPVS Platform Based on Distributed Edge Computing“. Journal of Physics: Conference Series 2732, Nr. 1 (01.03.2024): 012001. http://dx.doi.org/10.1088/1742-6596/2732/1/012001.

Der volle Inhalt der Quelle
Annotation:
Abstract Traditional video surveillance is difficult to effectively cope with real-time interaction between end side devices of over ten thousand scale and data centers, and these devices are widely dispersed and deployed on a large scale. They cannot meet the needs of diverse scenarios monitoring and smart applications such as security, urban comprehensive management, ports, mines, water conservancy, power, industrial manufacturing and other fields. Based on the analysis of the problems in the popular intelligent video surveillance system, this paper proposes the design mode of an intelligent video surveillance intelligent analysis platform (IAPVS) based on distributed edge computing by improving the existing centralized video cloud computing architecture.This design pattern provides a new overall design solution for the development of platform of intelligent video analysis suitable for diverse scenarios and smart application fields.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Yang, Biao, Guo Yu Lin und Wei Gong Zhang. „An Embedded System Used as Intelligent Node of Distributed Surveillance“. Applied Mechanics and Materials 475-476 (Dezember 2013): 763–66. http://dx.doi.org/10.4028/www.scientific.net/amm.475-476.763.

Der volle Inhalt der Quelle
Annotation:
The demand for intelligent surveillance is grown with the popularization of the camera monitoring network. An embedded system used as intelligent node of distributed surveillance is designed in this paper to improve the intelligent level of camera monitoring. Target detection and tracking can be implemented in this node and an anomaly intrusion detection system is designed based on the tracking results. Information sharing is realized via transmitting highly abstract object descriptors via the wireless network. A simple camera monitoring network is built in the labs to test the designed intelligent node and the experimental results indicate its effectiveness and accuracy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Galimov, R. R., und A. Yu Kruchinin. „Optimal Placement of Cameras in a Distributed Video Surveillance System“. Bulletin of Kalashnikov ISTU 21, Nr. 3 (16.10.2018): 192. http://dx.doi.org/10.22213/2413-1172-2018-3-192-197.

Der volle Inhalt der Quelle
Annotation:
Актуальность темы определяется широким развитием распределенных систем видеонаблюдения, характеризующихся большим количеством видеокамер, расположенных на большой территории. Эффективность распределенных систем видеонаблюдения зависит от множества факторов, таких как используемые алгоритмы распознавания, технические характеристики камер и средств обработки данных. Кроме того, качество системы видеонаблюдения во многом зависит от топологии размещения видеокамер. Целевая функция минимизирует количество камер, обеспечивая при этом необходимый уровень достоверности распознавания событий. Считается, что качество распознавания в основном зависит от пространственного разрешения распознанного объекта на видеокадре. Этот параметр определяется техническими характеристиками камеры и расстоянием до распознанного объекта. При пересечении поля зрения нескольких камер и возможности комбинирования их результатов увеличивается оценка достоверности распознавания объектов. Таким образом, при размещении камер в контролируемой зоне необходимо учитывать множество параметров: координаты, углы обзора, области пересечения поля зрения камер. Данная задача характеризуется высокой вычислительной сложностью. Поэтому для получения результата за приемлемое время предложен алгоритм оптимизации топологии на основе метода роя частиц. Представленный подход к оптимизации топологии размещения камер сократит время проектирования системы видеонаблюдения.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kumar, B. Prasanth, und Y. Bhaskarrao. „A Distributed Framework for Surveillance Missions Robots to Detect Intruders“. Indian Journal of Public Health Research & Development 8, Nr. 4 (2017): 1080. http://dx.doi.org/10.5958/0976-5506.2017.00471.5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Uddin, Md Azher, Aftab Alam, Nguyen Anh Tu, Md Siyamul Islam und Young-Koo Lee. „SIAT: A Distributed Video Analytics Framework for Intelligent Video Surveillance“. Symmetry 11, Nr. 7 (12.07.2019): 911. http://dx.doi.org/10.3390/sym11070911.

Der volle Inhalt der Quelle
Annotation:
In recent years, the amount of intelligent CCTV cameras installed in public places for surveillance has increased enormously and as a result, a large amount of video data is produced every moment. Due to this situation, there is an increasing request for the distributed processing of large-scale video data. In an intelligent video analytics platform, a submitted unstructured video undergoes through several multidisciplinary algorithms with the aim of extracting insights and making them searchable and understandable for both human and machine. Video analytics have applications ranging from surveillance to video content management. In this context, various industrial and scholarly solutions exist. However, most of the existing solutions rely on a traditional client/server framework to perform face and object recognition while lacking the support for more complex application scenarios. Furthermore, these frameworks are rarely handled in a scalable manner using distributed computing. Besides, existing works do not provide any support for low-level distributed video processing APIs (Application Programming Interfaces). They also failed to address a complete service-oriented ecosystem to meet the growing demands of consumers, researchers and developers. In order to overcome these issues, in this paper, we propose a distributed video analytics framework for intelligent video surveillance known as SIAT. The proposed framework is able to process both the real-time video streams and batch video analytics. Each real-time stream also corresponds to batch processing data. Hence, this work correlates with the symmetry concept. Furthermore, we introduce a distributed video processing library on top of Spark. SIAT exploits state-of-the-art distributed computing technologies with the aim to ensure scalability, effectiveness and fault-tolerance. Lastly, we implant and evaluate our proposed framework with the goal to authenticate our claims.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Julian, Kyle D., und Mykel J. Kochenderfer. „Distributed Wildfire Surveillance with Autonomous Aircraft Using Deep Reinforcement Learning“. Journal of Guidance, Control, and Dynamics 42, Nr. 8 (August 2019): 1768–78. http://dx.doi.org/10.2514/1.g004106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Lamichhane, Kamal. „IP Based Distributed Smart Camera Surveillance System for Forest Application“. i-manager's Journal on Digital Signal Processing 1, Nr. 3 (15.09.2013): 14–16. http://dx.doi.org/10.26634/jdp.1.3.2438.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Marcenaro, L., F. Oberti, G. L. Foresti und C. S. Regazzoni. „Distributed architectures and logical-task decomposition in multimedia surveillance systems“. Proceedings of the IEEE 89, Nr. 10 (2001): 1419–40. http://dx.doi.org/10.1109/5.959339.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Bousetouane, F., F. Vandewiele und C. Motamed. „Occlusion management in distributed multi-object tracking for visual-surveillance“. Pattern Recognition and Image Analysis 25, Nr. 2 (April 2015): 295–300. http://dx.doi.org/10.1134/s1054661815020042.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Favorskaya, Margarita, Euvgenii Kazmiruk und Aleksei Popov. „Distributed System for Crossroads Traffic Surveillance with Prediction of Incidents“. Procedia Computer Science 35 (2014): 851–60. http://dx.doi.org/10.1016/j.procs.2014.08.252.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie