Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Surfactant aggregate“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Surfactant aggregate" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Surfactant aggregate"
Veldhuizen, R. A., S. A. Hearn, J. F. Lewis und F. Possmayer. „Surface-area cycling of different surfactant preparations: SP-A and SP-B are essential for large-aggregate integrity“. Biochemical Journal 300, Nr. 2 (01.06.1994): 519–24. http://dx.doi.org/10.1042/bj3000519.
Der volle Inhalt der QuelleVeldhuizen, R. A., J. Marcou, L. J. Yao, L. McCaig, Y. Ito und J. F. Lewis. „Alveolar surfactant aggregate conversion in ventilated normal and injured rabbits“. American Journal of Physiology-Lung Cellular and Molecular Physiology 270, Nr. 1 (01.01.1996): L152—L158. http://dx.doi.org/10.1152/ajplung.1996.270.1.l152.
Der volle Inhalt der QuellePaul, Nawal K., Tyler Mercer, Hussein Al-Mughaid, D. Gerrard Marangoni, Michael J. McAlduff, Kulbir Singh und T. Bruce Grindley. „Synthesis and properties of multiheaded and multitailed surfactants based on tripentaerythritol“. Canadian Journal of Chemistry 93, Nr. 5 (Mai 2015): 502–8. http://dx.doi.org/10.1139/cjc-2014-0342.
Der volle Inhalt der QuelleChavez-Martinez, E. H., E. Cedillo-Cruz und H. Dominguez. „Adsorption of metallic ions from aqueous solution on surfactant aggregates: a molecular dynamics study“. Condensed Matter Physics 24, Nr. 2 (2021): 23601. http://dx.doi.org/10.5488/cmp.24.23601.
Der volle Inhalt der QuelleIkegami, Machiko, Thomas R. Korfhagen, Jeffrey A. Whitsett, Michael D. Bruno, Susan E. Wert, Kazuko Wada und Alan H. Jobe. „Characteristics of surfactant from SP-A-deficient mice“. American Journal of Physiology-Lung Cellular and Molecular Physiology 275, Nr. 2 (01.08.1998): L247—L254. http://dx.doi.org/10.1152/ajplung.1998.275.2.l247.
Der volle Inhalt der QuelleVeldhuizen, R. A., Y. Ito, J. Marcou, L. J. Yao, L. McCaig und J. F. Lewis. „Effects of lung injury on pulmonary surfactant aggregate conversion in vivo and in vitro“. American Journal of Physiology-Lung Cellular and Molecular Physiology 272, Nr. 5 (01.05.1997): L872—L878. http://dx.doi.org/10.1152/ajplung.1997.272.5.l872.
Der volle Inhalt der QuelleMadsen, Jens, Gunna Christiansen, Lise Giehm und Daniel Otzen. „Release of Pharmaceutical Peptides in an Aggregated State: Using Fibrillar Polymorphism to Modulate Release Levels“. Colloids and Interfaces 3, Nr. 1 (26.03.2019): 42. http://dx.doi.org/10.3390/colloids3010042.
Der volle Inhalt der QuelleVeldhuizen, R. A. W., K. Inchley, S. A. Hearn, J. F. Lewis und F. Possmayer. „Degradation of surfactant-associated protein B (SP-B) during in vitro conversion of large to small surfactant aggregates“. Biochemical Journal 295, Nr. 1 (01.10.1993): 141–47. http://dx.doi.org/10.1042/bj2950141.
Der volle Inhalt der QuelleLiu, Z., D. A. Edwards und R. G. Luthy. „Nonionic Surfactant Sorption onto Soil“. Water Science and Technology 26, Nr. 9-11 (01.11.1992): 2337–40. http://dx.doi.org/10.2166/wst.1992.0731.
Der volle Inhalt der QuelleVELDHUIZEN, Ruud A. W., Li-Juan YAO, Stephen A. HEARN, Fred POSSMAYER und James F. LEWIS. „Surfactant-associated protein A is important for maintaining surfactant large-aggregate forms during surface-area cycling“. Biochemical Journal 313, Nr. 3 (01.02.1996): 835–40. http://dx.doi.org/10.1042/bj3130835.
Der volle Inhalt der QuelleDissertationen zum Thema "Surfactant aggregate"
Mrinmay, Jha. „Physico-chemical studies on soft matter: behaviour of surfactant aggregate and biodegradable polymer systems“. Thesis, University of North Bengal, 2015. http://ir.nbu.ac.in/handle/123456789/1526.
Der volle Inhalt der QuelleMousseau, Fanny. „Le surfactant pulmonaire, une barrière déterminante de la réponse des cellules à l'exposition aux nanoparticules“. Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC125/document.
Der volle Inhalt der QuelleParticulate matter emitted by human activity are the cause of various pulmonary and cardiac diseases. After inhalation, nanoparticles (ie particles smaller than 100 nm) can reach the pulmonary alveoli, where the gas exchanges take place. In the alveoli, the nanoparticles first encounter the pulmonary surfactant which is the fluid that lines the epithelial cells. Of a few hundreds of nanometers in thickness, the pulmonary fluid is composed of phospholipids and proteins, the phospholipids being assembled in multilamellar vesicles. In this work, we considered model nanoparticles of different nature (latex, metal oxides, silica). Their interaction with a mimetic pulmonary fluid administered to premature infants (Curosurf®) was studied by light scattering and by optical and electron microscopy. We have shown that the interaction is non-specific and mainly of electrostatic origin. The wide variety of hybrid structures found in this work attests however of the complexity of the phospholipid/particle interaction. In addition, we succeeded in formulating particles covered with a Curosurf® supported bilayer. These particles exhibit remarkable stability and stealthiness in biological environment. In a second part, we studied the role of the pulmonary surfactant on the interactions between nanoparticles and alveolar epithelial cells (A459). With cellular biology assays, we observed that the number of internalized particles decreases dramatically in presence of surfactant. At the same time, we found a significant increase in the A459 cell viability. Our study shows the importance of the pulmonary surfactant in protecting the alveolar epithelium in case of nanoparticle exposure
Kjellin, Mikael. „Structure-Property Relationships of Surfactants at Interfaces and Polyelectrolyte-Surfactant Aggregates“. Doctoral thesis, KTH, Chemistry, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3299.
Der volle Inhalt der QuelleThe first part of this thesis is concerned with thestructure-property relationships in nonionic surfactantsystems. The main aim was to investigate how the surfactantstructure influences the adsorption at interfaces andinteractions between surfactant coated interfaces.Particularly, the effect of the structure of the surfactantheadgroups was investigated. These were sugar-based headgroupwith varying size and flexibility and poly(ethylene oxide)based headgroups with or without an additional amide or estergroup. The hydrophobic part of the surfactant consisted mostlyof straight alkyl chains, except for one type of poly(ethyleneoxide) based surfactant with a dehydroabietic hydrophobe.
The main technique that was used is the surface forcetechnique, with which the forces acting between two adsorbedsurfactant layers on hydrophilic or hydrophobic surfaces can bemeasured. These forces are important for e.g. the stability ofdispersions. The hydrophilic surfaces employed were glass andmica, whereas the hydrophobic surfaces were silanized glass andhydrophobized mica. The adsorption behavior on hydrophilicsurfaces is highly dependent on the type of headgroup andsurface, whereas similar results were obtained on the two typesof hydrophobic surfaces. To better understand how the surfaceforces are affected by the surfactant structure, measurementsof adsorbed amount and theoretical mean-field latticecalculations were carried out. The results show that the sugarsurfactant layers and poly(ethylene oxide) surfactant layersgive rise to very different surface forces, but that the forcesare more similar within each group. The structure-propertyrelationships for many other physical properties have beenstudied as well. These include equilibrium and dynamicadsorption at the liquid-vapor interface, micelle size, micelledynamics, and wetting.
The second part in this thesis is about the aggregationbetween cationic polyelectrolytes and an anionic surfactant.The surface force technique was used to study the adsorption ofa low charged cationic polyelectrolyte on mica, and theaggregation between the adsorbed polyelectrolyte with theanionic surfactant. The aggregation in bulk was studied withturbidimetry, small angle neutron scattering (SANS), and smallangle x-ray scattering (SAXS). An internal hexagonal aggregatestructure was found for some of the bulk aggregates.
Keywords:nonionic surfactant, sugar surfactant,poly(ethylene oxide), amide, ester, polyelectrolyte, SDS,hydrophobic surface, glass surface, mica, adsorption,aggregation, micelle size, surface forces, wetting, dynamicsurface tension, NMR, TRFQ, SANS, SAXS, mean-field latticecalculations.
Renoncourt, Audrey. „Study of supra-aggregates in catanionic surfactant systems“. [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=976351714.
Der volle Inhalt der QuelleSingh, Pankaj Kumar. „Dispersion of nanoparticulate suspensions using self-assembled surfactant aggregates“. [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE1001182.
Der volle Inhalt der QuelleVoisin, David. „Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces“. Thesis, University of Bristol, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251089.
Der volle Inhalt der QuelleLam, Viet Duy. „Structure of Rod-like Polyelectrolyte-Surfactant Aggregates in Solution and in Adsorbed Layers“. Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/69.
Der volle Inhalt der QuelleChagas-Silva, Fatima Aparecida das. „Novos materiais funcionais organo-híbridos baseados em óxidos metálicos e diimidas aromáticas“. Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/46/46136/tde-10092012-094158/.
Der volle Inhalt der QuelleThe use and study of hybrid materials is a challenge for the chemist to develop materials having new and superior qualities for applications in photonics, sensors and related areas. In this context one has to speculate on the properties of the organic and inorganic partners to achieve better and new properties. In this study the metal oxides (in particular Cerium Oxides), a special class among inorganic nanoparticles were selected to exploit their applications with an also special class of organic compounds the Naphthalene Diimides. Cerium Oxide is a wide bandgap semiconductor well known for its catalytic capabilities and for its simple manipulation to prepare thin films and nanoparticles. Naphthalene Diimides derivatives are known for their superior lectrochemical activities comparable to those of Paraquat (Methyl Viologen) but with larger amplitude of photochemical applications. Positively and negatively charged, surfactant like, Naphthalene Diimides, were synthesized. After detailed characterization of the Naphthalene Diimides including selfassociation and interaction with surfactant molecules, the interaction with Cerium Oxide nanoparticles was determined. Naphthalene Diimides interacted in a special manner with Cerium Oxide nanoparticles rendering hydrolytic inertness and novel photochromic behavior. The organic dye is proposed to adsorb in the crevices of the particles and furthermore forming stable dimers that accounts for the new photoactivities observed
Li, Yan. „A study of surfactant aggregates (a) in the presence of neutral polymers, and (b) as potential lubricants“. Thesis, University of Salford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244844.
Der volle Inhalt der QuelleShen, Licheng. „Investigation of the removal and recovery of metal cations and anions from dilute aqueous solutions using polymer-surfactant aggregates“. Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:33afa911-3ffb-484e-8db5-b6843928f175.
Der volle Inhalt der QuelleBücher zum Thema "Surfactant aggregate"
1931-, Christian Sherril Duane, und Scamehorn John F. 1953-, Hrsg. Solubilization in surfactant aggregates. New York: M. Dekker, 1995.
Den vollen Inhalt der Quelle findenAveyard, Bob. Surfactants. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198828600.001.0001.
Der volle Inhalt der QuelleChristian, Sherril D., und John F. Scamehorn. Solubilization in Surfactant Aggregates. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenSolubilization in Surfactant Aggregates. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenChristian, Sherril D., und John F. Scamehorn. Solubilization in Surfactant Aggregates. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenChristian, Sherril D., und John F. Scamehorn. Solubilization in Surfactant Aggregates. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenChristian, Sherril D., und John F. Scamehorn. Solubilization in Surfactant Aggregates. Taylor & Francis Group, 2020.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Surfactant aggregate"
Bharti, Bhuvnesh. „Surfactant Adsorption and Aggregate Structure at Silica Nanoparticles“. In Adsorption, Aggregation and Structure Formation in Systems of Charged Particles, 47–61. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07737-6_4.
Der volle Inhalt der QuelleDong, J., G. Mao und R. M. Hill. „Atomic Force Microscopy Study of Trisiloxane Surfactant Aggregate Structures at the Solid-Liquid Interface“. In ACS Symposium Series, 2–16. Washington, DC: American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0861.ch001.
Der volle Inhalt der QuelleClint, John H. „Dispersions of surfactant aggregates“. In Surfactant Aggregation, 173–91. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2272-6_8.
Der volle Inhalt der QuelleKunitake, Toyoki. „Syntheses, Aggregate Morphologies, and Applications of Membrane-Forming Amphiphiles“. In Surfactants in Solution, 727–44. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-7981-6_14.
Der volle Inhalt der QuelleRosenholm, J. B., und C. Jolicoeur. „Thermodynamic Analysis of the Breakdown of w/o -Microemulsion Aggregates due to Changes in the Composition of the Solvent“. In Surfactants in Solution, 89–101. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-7990-8_4.
Der volle Inhalt der QuelleKunitake, Toyoki. „Structural Relationships between Monomeric Surfactants and Their Aggregates“. In Modern Trends of Colloid Science in Chemistry and Biology, 34–54. Basel: Birkhäuser Basel, 1985. http://dx.doi.org/10.1007/978-3-0348-6513-5_2.
Der volle Inhalt der QuelleBrackman, Josephine C., und Jan B. F. N. Engberts. „Interactions Between Water-Soluble Nonionic Polymers and Surfactant Aggregates“. In ACS Symposium Series, 337–49. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0578.ch024.
Der volle Inhalt der QuelleJohansson, Jan. „Harnessing the Self-Assembling Properties of Proteins in Spider Silk and Lung Surfactant“. In Amyloid Fibrils and Prefibrillar Aggregates, 455–70. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527654185.ch21.
Der volle Inhalt der QuelleKlyachko, Natalia L., und Andrey V. Levashov. „Surfactant Aggregates as Matrix Nanocontainers for Proteins (Enzymes) Entrapment and Regulation“. In ACS Symposium Series, 156–70. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0986.ch009.
Der volle Inhalt der QuelleSzönyi, S., A. Cambon, H. J. Watzke, P. Schurtenberger und E. Wehrli. „Multicomponent Vesicular Aggregates (MCVA): Spontaneous Vesiculation of Perfluorinated Single-Chain Surfactant Mixtures“. In Springer Proceedings in Physics, 198–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84763-9_39.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Surfactant aggregate"
Christesen, Steven D., Stephanie M. Garlick und Fred R. Longo. „Microemulsion Aggregation Numbers Determined by Time-Resolved Luminescence“. In Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/laca.1990.wb3.
Der volle Inhalt der QuelleCoscia, Benjamin, Andrea Browning, Jeffrey Sanders und Mat Halls. „Molecular simulation as a tool for the design of biosurfactant-based cosmetic formulations“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/jdlz5827.
Der volle Inhalt der QuelleMarliere, Claire, Vincent Miralles, Claire Morgand, Virginie Rome, Aymerick Le Bris, Chloé Guilloteau, Tiphaine Courtaud und David Rousseau. „Surfactant-Polymer Compatibility in Bulk and Static Conditions vs. Confined and Under Flow Conditions“. In SPE Conference at Oman Petroleum & Energy Show. SPE, 2022. http://dx.doi.org/10.2118/200074-ms.
Der volle Inhalt der QuelleBello, Ayomikun, Alexander Rodionov, Anastasia Ivanova und Alexey Cheremisin. „Experimental Investigation and Molecular Dynamics of the Fluid-Fluid Interactions Between Binary Surfactant Systems for EOR“. In GOTECH. SPE, 2024. http://dx.doi.org/10.2118/219237-ms.
Der volle Inhalt der QuelleGutierrez, Gustavo, Juan Catan˜o und Oscar Perales-Perez. „Development of a Magnetocaloric Pump Using a Mn-Zn Ferrite Ferrofluid“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13784.
Der volle Inhalt der QuelleChen, Shaohua, Ming Han, Abdulkareem AlSofi und Alhasan Fuseni. „Non-Ionic Surfactant Formulation with Ultra-Low Interfacial Tension at High-Temperature and High-Salinity Conditions“. In SPE Conference at Oman Petroleum & Energy Show. SPE, 2022. http://dx.doi.org/10.2118/200273-ms.
Der volle Inhalt der QuelleQuan, Glen Lelyn, Kentaro Matsumiya, Michiaki Araki, Yasuki Matsumura und Yoshihiko Hirata. „The role of sophorolipid as carrier of active substances“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/hnkx3869.
Der volle Inhalt der QuelleKamel, Ahmed H. „Rheological Characteristics of Surfactant-Based Fluids: A Comprehensive Study“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86044.
Der volle Inhalt der QuelleGuetni, Imane, Claire Marlière und David Rousseau. „Chemical EOR in Low Permeability Sandstone Reservoirs: Impact of Clay Content on the Transport of Polymer and Surfactant“. In SPE Western Regional Meeting. SPE, 2021. http://dx.doi.org/10.2118/200784-ms.
Der volle Inhalt der QuelleEwbank, Conrado Gerard, John Clements, Max Deluge, Rodrigo Balloni Rabelo, Rafael Sobral Dezotti und Roger Pezzuol Dallaqua. „Development and Evaluation of Asphaltene Inhibitors for Offshore Brazilian Crudes“. In Offshore Technology Conference Brasil. OTC, 2023. http://dx.doi.org/10.4043/32761-ms.
Der volle Inhalt der Quelle