Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Surface wave microwave discharge“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Surface wave microwave discharge" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Surface wave microwave discharge"
Булат, П. В., Л. П. Грачев, И. И. Есаков und А. А. Раваев. „Граничное значение поля, разделяющее области подкритических и глубоко подкритических видов СВЧ-разряда, зажигаемого на диэлектрической поверхности“. Журнал технической физики 89, Nr. 1 (2019): 64. http://dx.doi.org/10.21883/jtf.2019.01.46963.128-18.
Der volle Inhalt der QuelleZhukov, V. I., D. M. Karfidov und K. F. Sergeichev. „Propagation of microwave surface-wave-sustained discharge in air“. Journal of Physics: Conference Series 1383 (November 2019): 012021. http://dx.doi.org/10.1088/1742-6596/1383/1/012021.
Der volle Inhalt der QuelleYanguas-Gil, A., J. L. Hueso, J. Cotrino, A. Caballero und A. R. González-Elipe. „Reforming of ethanol in a microwave surface-wave plasma discharge“. Applied Physics Letters 85, Nr. 18 (November 2004): 4004–6. http://dx.doi.org/10.1063/1.1808875.
Der volle Inhalt der QuelleYanagita, Norihito, Toshifumi Itagaki und Makoto Katsurai. „Experimental Investigations on Discharge Characteristicsof Plane Type Surface Wave Microwave Plasma“. IEEJ Transactions on Fundamentals and Materials 121, Nr. 1 (2001): 44–51. http://dx.doi.org/10.1541/ieejfms1990.121.1_44.
Der volle Inhalt der QuelleRakem, Z., P. Leprince und J. Marec. „Modelling of a microwave discharge created by a standing surface wave“. Journal of Physics D: Applied Physics 25, Nr. 6 (14.06.1992): 953–59. http://dx.doi.org/10.1088/0022-3727/25/6/009.
Der volle Inhalt der QuelleAZARENKOV, N. A., I. B. DENISENKO und K. N. OSTRIKOV. „Microwave gas discharge produced and sustained by a surface wave propagating along a cylindrical metal antenna with a dielectric coating“. Journal of Plasma Physics 59, Nr. 1 (Januar 1998): 15–26. http://dx.doi.org/10.1017/s0022377897006272.
Der volle Inhalt der QuelleAzarenkov, N. A., V. O. Girka und I. V. Pavlenko. „Microwave Gas Discharge Sustained by the Azimuthal Surface Waves“. Contributions to Plasma Physics 40, Nr. 5-6 (September 2000): 529–36. http://dx.doi.org/10.1002/1521-3986(200009)40:5/6<529::aid-ctpp529>3.0.co;2-1.
Der volle Inhalt der QuelleChen, Guoxing, Tiago Silva, Violeta Georgieva, Thomas Godfroid, Nikolay Britun, Rony Snyders und Marie Paule Delplancke-Ogletree. „Simultaneous dissociation of CO2 and H2O to syngas in a surface-wave microwave discharge“. International Journal of Hydrogen Energy 40, Nr. 9 (März 2015): 3789–96. http://dx.doi.org/10.1016/j.ijhydene.2015.01.084.
Der volle Inhalt der QuelleCzylkowski, D., M. Jasiński, J. Mizeraczyk und Z. Zakrzewski. „Argon and neon plasma columns in continuous surface wave microwave discharge at atmospheric pressure“. Czechoslovak Journal of Physics 56, S2 (Oktober 2006): B684—B689. http://dx.doi.org/10.1007/s10582-006-0271-7.
Der volle Inhalt der QuelleBogdanov, Todor, Ivan Tsonev, Plamena Marinova, Evgenia Benova, Krasimir Rusanov, Mila Rusanova, Ivan Atanassov, Zdenka Kozáková und František Krčma. „Microwave Plasma Torch Generated in Argon for Small Berries Surface Treatment“. Applied Sciences 8, Nr. 10 (10.10.2018): 1870. http://dx.doi.org/10.3390/app8101870.
Der volle Inhalt der QuelleDissertationen zum Thema "Surface wave microwave discharge"
Dvořáková, Eva. „Využití plazmové trysky pro hojení ran“. Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-444544.
Der volle Inhalt der QuelleLockyear, Matthew John. „Electromagnetic surface wave mediated absorption and transmission of radiation at microwave frequencies“. Thesis, University of Exeter, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410814.
Der volle Inhalt der QuelleShivhare, Uma Shanker. „Drying characteristics of corn in a microwave field with a surface-wave applicator“. Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=70344.
Der volle Inhalt der QuelleThe drying rate curves indicated that the microwave drying of corn took place in the falling rate period. It was hypothesized that diffusion is the controlling mechanism for moisture transfer from within the kernel in microwave drying of corn.
A mathematical model was developed to describe the change in moisture content at the surface as a function of the free moisture content of corn. The diffusion model employing varying surface conditions was used to describe the microwave drying process. An Arrhenius type equation was developed to describe the relationship between the diffusion coefficient and the outlet air temperature. The diffusion coefficient values varied from 0.0008 to 0.0082 cm$ sp2$/h when constant levels of microwave power were applied continuously for drying corn. Equilibrium moisture content was determined and regression equations were developed to describe the EMC with microwave power and air velocity.
The diffusion coefficient increased with the levels of absorbed power, decreased with increasing air velocity but remained insensitive to the inlet air temperature when microwaves were applied continuously for drying corn. The increased drying rates at higher power levels reduced the drying time considerably but at the cost of energy loss through the passing air and reduced germination and bulk density of dried corn. Application of absorbed microwave power at 0.25 W/g resulted in greater than 92% germination of dried corn. Deleterious effects on product quality was observed when the applied power exceeded 0.75 W/g.
Pulsed and variable microwave power effects were investigated in order to optimize the drying process. Time for drying corn increased but the effective duration for which microwaves were applied and the energy requirement in the pulsed mode was lower compared to both continuous and variable microwave operation.
Leatherwood, Daniel Aaron. „Plane wave, pattern subtraction, range compensation for spherical surface antenna pattern measurements“. Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/14683.
Der volle Inhalt der QuelleGurumurthy, Venkataramanan. „Barium Strontium Titanate films for tunable microwave and acoustic wave applications“. [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002089.
Der volle Inhalt der QuelleCetintepe, Cagri. „Development Of Mems Technology Based Microwave And Millimeter-wave Components“. Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611618/index.pdf.
Der volle Inhalt der Quellepull-in, release and zipping phenomena are investigated. In particular, semi-empirical expressions are developed for the pull-in voltage with associated errors not exceeding 3.7 % of FEA (Finite Element Analysis) results for typical configurations. The shunt, capacitive-contact RF MEMS switch is designed in electromagnetic and mechanical domains for Ka-band operation. Switches fabricated in the first process run could not meet the design specifications. After identifying sources of relevant discrepancies, a design modification is attempted and re-fabricated devices are operated successfully. In particular, measured OFF-state return and insertion losses better than -16.4 dB and 0.27 dB are attained in 1-40 GHz. By applying a 20-25V actuation, ON-state resonances are tuned precisely to 35 GHz with an optimum isolation level of 39 dB.
Park, Joongsuk. „Development of microwave and millimeter-wave integrated-circuit stepped-frequency radar sensors for surface and subsurface profiling“. Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/1588.
Der volle Inhalt der QuelleJessup, Andrew Thomas. „Detection and characterization of deep water wave breaking using moderate incidence angle microwave backscatter from the sea surface“. Online version, 1990. http://hdl.handle.net/1912/3149.
Der volle Inhalt der QuelleJessup, Andrew T. „Detection and characterization of deep water wave breaking using moderate incidence angle microwave backscatter from the sea surface“. Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/14274.
Der volle Inhalt der QuelleGbele, Kokou. „Fabrication of Novel Structures to Enhance the Performance of Microwave, Millimeter Wave and Optical Radiators“. Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/612886.
Der volle Inhalt der QuelleBücher zum Thema "Surface wave microwave discharge"
Jessup, Andrew T. Detection and characterization of deep water wave breaking using moderate incidence angle microwave backscatter from the sea surface. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1990.
Den vollen Inhalt der Quelle findenKong, Jin Au. Remote sensing of Earth terrain: Progress report, January 1993 - June 30, 1993. [Washington, D.C: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenKong, Jin Au. Remote sensing of earth terrain. [Washington, DC: National Aeronautics and Space Administration, 1992.
Den vollen Inhalt der Quelle findenKong, Jin Au. Remote sensing of Earth terrain: Semiannual report covering the period, March 1, 1987 - August 31, 1987. Cambridge, Mass: Massachusetts Institute of Technology, Research Laboratory of Electronics, 1987.
Den vollen Inhalt der Quelle findenKong, Jin Au. Remote sensing of Earth terrain: Semi-annual report covering the period March 1, 1985-August 31, 1985. Cambridge, Mass: Massachusetts Institute of Technology, Research Laboratory of Electronics, 1985.
Den vollen Inhalt der Quelle findenKong, Jin Au. Remote sensing of Earth terrain: Semi-annual report covering the period March 1, 1986-August 31, 1986. Cambridge, Mass: Massachusetts Institute of Technology, Research Laboratory of Electronics, 1986.
Den vollen Inhalt der Quelle findenKong, Jin Au. Remote sensing of Earth terrain: Semi-annual report covering the period March 1, 1988-August 31, 1988. Cambridge, Mass: Massachusetts Institute of Technology, Research Laboratory of Electronics, 1988.
Den vollen Inhalt der Quelle findenKong, Jin Au. Remote sensing of Earth terrain: Semiannual report covering the period, September 1, 1986--February 28, 1987. Cambridge, Mass: Massachusetts Institute of Technology, Research Laboratory of Electronics, 1987.
Den vollen Inhalt der Quelle finden1930-, Phillips O. M., Hasselmann Klaus 1931- und Inter-Union Commission on Radio Meteorology., Hrsg. Wave dynamics and radio probing of the ocean surface. New York: Plenum Press, 1986.
Den vollen Inhalt der Quelle findenLi, Yinghong. Investigation on Oblique Shock Wave Control by Surface Arc Discharge in a Mach 2.2 Supersonic Wind Tunnel. INTECH Open Access Publisher, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Surface wave microwave discharge"
Zakrzewski, Zenon, Michel Moisan und Gaston Sauvé. „Surface-Wave Plasma Sources“. In Microwave Discharges, 117–40. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1130-8_9.
Der volle Inhalt der QuelleGranier, Agnès. „Surface Wave Plasmas in O2-N2 Mixtures as Active Species Sources for Surface Treatments“. In Microwave Discharges, 491–501. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1130-8_31.
Der volle Inhalt der QuelleGeorgieva, Mariana, und Antonia Shivarova. „Non-Linear Behaviour of Surface Wave Propagation in Plasma-Waveguides“. In Microwave Discharges, 65–74. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1130-8_4.
Der volle Inhalt der QuelleKortshagen, U. „Experimental and Theoretical Determination of Electron Energy Distribution Functions in Surface Wave Plasmas“. In Microwave Discharges, 303–12. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1130-8_20.
Der volle Inhalt der QuelleSá, A. B. „Modeling of Surface Wave Produced Discharges in Argon at Low to Intermediate Pressure“. In Microwave Discharges, 75–83. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1130-8_5.
Der volle Inhalt der QuelleMoisan, Michel, Joseph Hubert, Joëlle Margot, Gaston Sauvé und Zenon Zakrzewski. „The Contribution of Surface-Wave-Sustained Plasmas to HF Plasma Generation, Modeling and Applications: Status and Perspectives“. In Microwave Discharges, 1–24. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1130-8_1.
Der volle Inhalt der QuelleMargot, Joëlle, und Michel Moisan. „Modeling of Surface-Wave-Sustained Plasmas in Static Magnetic Fields: A Tool for the Study of Magnetically Assisted HF Plasmas“. In Microwave Discharges, 141–59. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1130-8_10.
Der volle Inhalt der QuelleMoisan, M., und Z. Zakrzewski. „Plasmas Sustained by Surface Waves at Microwave and RF Frequencies: Experimental Investigation and Applications“. In Radiative Processes in Discharge Plasmas, 381–430. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5305-8_16.
Der volle Inhalt der QuelleFerreira, C. M. „Plasmas Sustained by Surface Waves at Radio and Microwave Frequencies: Basic Processes and Modeling“. In Radiative Processes in Discharge Plasmas, 431–66. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5305-8_17.
Der volle Inhalt der QuelleLister, Graeme G. „Strongly Damped Surface Waves in Plasmas“. In Microwave Discharges, 85–94. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1130-8_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Surface wave microwave discharge"
Esakov, Igor, Lev Grachev, Vladimir Bychkov und David Van Wie. „Surface Microwave Discharge in Quasi-Optical Wave Beam“. In 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-430.
Der volle Inhalt der QuelleChen Zhaoquan, Liu Minghai, Chen Wei, Luo Zhiqing, Tang Liang, Lan Chaohui und Hu Xiwei. „High-power microwave discharge for producing large-area surface-wave plasmas“. In 2008 8th International Symposium on Antennas, Propagation and EM Theory. IEEE, 2008. http://dx.doi.org/10.1109/isape.2008.4735276.
Der volle Inhalt der QuelleJasinski, M., Z. Zakrzewski, J. Mizeraczyk, Hans-Jürgen Hartfuss, Michel Dudeck, Jozef Musielok und Marek J. Sadowski. „Electron Density in Atmospheric Pressure Microwave Surface Wave Discharges“. In PLASMA 2007: International Conference on Research and Applications of Plasmas; 4th German-Polish Conference on Plasma Diagnostics for Fusion and Applications; 6th French-Polish Seminar on Thermal Plasma in Space and Laboratory. AIP, 2008. http://dx.doi.org/10.1063/1.2909132.
Der volle Inhalt der QuelleMoisan, Michel, Carlos M. Ferreira, Joseph Hubert, Joëlle Margot und Zenon Zakrzewski. „Surface-wave sustained plasmas: Toward a better understanding of RF and microwave discharges“. In The XXII. international conference on phenomena in ionized gases (ICPIG). AIP, 1996. http://dx.doi.org/10.1063/1.50117.
Der volle Inhalt der QuelleAliev, Yu M., I. Ghanashev, S. Grosse, U. Kortshagen, H. Schluter und A. Shivarova. „Microwave discharges maintained by surface waves: Modelling and experiments“. In International Conference on Plasma Science (papers in summary form only received). IEEE, 1995. http://dx.doi.org/10.1109/plasma.1995.531596.
Der volle Inhalt der QuelleShibkov, Valery, Andrey Aleksandrov, Vladimir Chernikov, Sergey Dvinin, Alexey Ershov, L. Shibkova, Anna Abramova et al. „Surface Microwave Discharge in Air“. In 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1455.
Der volle Inhalt der QuelleShibkov, V., V. Chernikov, A. Ershov, S. Dvinin, Ch Raffoul, L. Shibkova, I. Timofeev, D. Van Wie, D. Vinogradov und A. Voskanyan. „Surface microwave discharge in supersonic airflow“. In 32nd AIAA Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-3087.
Der volle Inhalt der QuelleEsakov, Igor, Lev Grachev, Kirill Khodataev und David Van Wie. „Microwave Discharge in Quasi-optical Wave Beam“. In 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-433.
Der volle Inhalt der QuelleBoeuf, J. P. „Collisionless electron heating in a surface-wave discharge“. In 2015 IEEE International Conference on Plasma Sciences (ICOPS). IEEE, 2015. http://dx.doi.org/10.1109/plasma.2015.7179751.
Der volle Inhalt der QuelleAleksandrov, Andrei, Valery Shibkov und Lidia Shibkova. „Surface Microwave Discharge at High Pressures of Air“. In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-490.
Der volle Inhalt der Quelle