Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Surface chemistry of zwitterion“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Surface chemistry of zwitterion" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Surface chemistry of zwitterion"
Abdullah, Norfadhilatuladha, Norhaniza Yusof, Mohammed Abdullah Dahim, Muhammad Faris Hamid, Lau Woei Jye, Juhana Jaafar, Farhana Aziz, Wan Norhayati Wan Salleh, Ahmad Fauzi Ismail und Nurasyikin Misdan. „Single-Step Surface Hydrophilization on Ultrafiltration Membrane with Enhanced Antifouling Property for Pome Wastewater Treatment“. Separations 10, Nr. 3 (09.03.2023): 188. http://dx.doi.org/10.3390/separations10030188.
Der volle Inhalt der QuelleRegev, Clil, Zhongyi Jiang, Roni Kasher und Yifat Miller. „Distinct Antifouling Mechanisms on Different Chain Densities of Zwitterionic Polymers“. Molecules 27, Nr. 21 (31.10.2022): 7394. http://dx.doi.org/10.3390/molecules27217394.
Der volle Inhalt der QuelleChiao, Yu-Hsuan, Arijit Sengupta, Micah Belle Marie Yap Ang, Shu-Ting Chen, Teow Yeit Haan, Jorge Almodovar, Wei-Song Hung und S. Ranil Wickramasinghe. „Application of Zwitterions in Forward Osmosis: A Short Review“. Polymers 13, Nr. 4 (15.02.2021): 583. http://dx.doi.org/10.3390/polym13040583.
Der volle Inhalt der QuelleLi, Bor-Ran, Mo-Yuan Shen, Hsiao-hua Yu und Yaw-Kuen Li. „Rapid construction of an effective antifouling layer on a Au surface via electrodeposition“. Chem. Commun. 50, Nr. 51 (2014): 6793–96. http://dx.doi.org/10.1039/c4cc01329h.
Der volle Inhalt der QuellePenfold, Jeffrey, und Robert K. Thomas. „Neutron reflection and the thermodynamics of the air–water interface“. Physical Chemistry Chemical Physics 24, Nr. 15 (2022): 8553–77. http://dx.doi.org/10.1039/d2cp00053a.
Der volle Inhalt der QuelleDassonville, Delphine, Thomas Lécuyer, Johanne Seguin, Yohann Corvis, Jianhua Liu, Guanyu Cai, Julia Mouton, Daniel Scherman, Nathalie Mignet und Cyrille Richard. „Zwitterionic Functionalization of Persistent Luminescence Nanoparticles: Physicochemical Characterizations and In Vivo Biodistribution in Mice“. Coatings 13, Nr. 11 (08.11.2023): 1913. http://dx.doi.org/10.3390/coatings13111913.
Der volle Inhalt der QuelleNikam, Shantanu P., Peiru Chen, Karissa Nettleton, Yen-Hao Hsu und Matthew L. Becker. „Zwitterion Surface-Functionalized Thermoplastic Polyurethane for Antifouling Catheter Applications“. Biomacromolecules 21, Nr. 7 (27.05.2020): 2714–25. http://dx.doi.org/10.1021/acs.biomac.0c00456.
Der volle Inhalt der QuelleMondini, Sara, Marianna Leonzino, Carmelo Drago, Anna M. Ferretti, Sandro Usseglio, Daniela Maggioni, Paolo Tornese, Bice Chini und Alessandro Ponti. „Zwitterion-Coated Iron Oxide Nanoparticles: Surface Chemistry and Intracellular Uptake by Hepatocarcinoma (HepG2) Cells“. Langmuir 31, Nr. 26 (23.06.2015): 7381–90. http://dx.doi.org/10.1021/acs.langmuir.5b01496.
Der volle Inhalt der QuelleKravchenko, A. A., E. M. Demianenko, A. G. Grebenyuk, M. I. Terets, M. G. Portna und V. V. Lobanov. „Quantum chemical study on the interaction of arginine with silica surface“. Himia, Fizika ta Tehnologia Poverhni 12, Nr. 4 (30.12.2021): 358–64. http://dx.doi.org/10.15407/hftp12.04.358.
Der volle Inhalt der QuelleCosta, Paolo, Iris Trosien, Joel Mieres-Perez und Wolfram Sander. „Isolation of an Antiaromatic Singlet Cyclopentadienyl Zwitterion“. Journal of the American Chemical Society 139, Nr. 37 (11.09.2017): 13024–30. http://dx.doi.org/10.1021/jacs.7b05807.
Der volle Inhalt der QuelleDissertationen zum Thema "Surface chemistry of zwitterion"
Ghisolfi, Alessio. „Applications of functionnal diphosphines quinonoid zwietterions to coordination chemistry and surface functionalization“. Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAF016/document.
Der volle Inhalt der QuelleThe aim of this thesis was to develop new families of polyfunctional ligands to study their coordination chemistry towards transition metals and, depending on the products formed, to investigate their physical (e.g. magnetic) and / or catalytic properties. The evaluation of their potential for the formation of new materials as well as for the functionalization of metal surfaces was also part of the objective of this thesis. Therefore, each ligand has been functionalized with groups suitable for the anchoring on metallic surfaces, such as zwitterionic or thioethers moieties
Pu, Yuzhou. „Synthesis and functionalization of hybrid plasmon-semiconductor nanoparticles for cancer phototherapy“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2023. http://www.theses.fr/2023UPSLS031.
Der volle Inhalt der QuelleGold nanoparticles possess high light absorption cross sections due to their localized surface plasmon resonance, making them promising photosensitizers for various biomedical applications. Among them, gold nanorods (AuNRs), can effectively absorb light in the near-infrared range, which is the optimal window for light penetration into the human body. As a result, AuNRs hold significant potential as photosensitizers for phototherapy.When AuNRs absorb light, they generate high-energy “hot” electrons within their structure. These hot electrons can directly convert the absorbed energy into heat, leading to a temperature increase in the surrounding environment. This localized heating can effectively kill cancer cells. Alternatively, hot electrons can react with water or dioxygen in the environment, generating cytotoxic reactive oxygen species. These reactive oxygen species can induce programmed cell death. However, current challenges in phototherapies involving AuNRs revolve around the low efficiency of plasmonic energy conversion and utilization, limiting their further clinical trials. One possible solution to address this challenge is to combine AuNRs with specific semiconductors. This combination allows for the transfer of light energy absorbed by AuNRs to the semiconductor material, either through hot electron injection or energy transfer mechanisms.We synthesized hybrid dumbbell-shaped nanoparticles consisting of gold nanorods (AuNRs) and titanium dioxide (TiO2), AuNR/TiO2. In this heterostructure, hot electrons generated within the AuNRs could be directly injected into the conduction band of TiO2. This transfer extends the lifetime of energetic electrons, enabling them to effectively react with dioxygen in the environment and generate hydroxyl radicals. To ensure the stability of these nanoparticles in a physiological environment, we functionalized them with polyethylene glycol-phosphonate polymer ligands. The density of these polymer ligands on the nanoparticle surface plays a crucial role in achieving optimal photoactivity. We then evaluated the potential of these hybrid nanoparticles for photodynamic therapy in vitro on cancer cells after irradiation with near-infrared (NIR) light.We also explored the combination of AuNRs with semiconductor materials such as silver sulfide and copper sulfide, resulting in the formation of core-shell hybrid nanostructures. In these hybrid systems, the plasmon energy present in the AuNRs is transferred to the semiconductor materials through dipole-dipole interactions. This energy transfer process leads to the creation of exciton pairs within the semiconductors, which can further generate reactive oxygen species. To enhance the efficiency of this energy transfer and prevent undesired recombination between excited electrons and holes, we introduced an insulating silica layer at the interface between the gold and semiconductor components. We also assessed the photoactivity of these hybrid nanoparticles under continuous-wave NIR illumination.Lastly, the therapeutic efficacy of nanoparticles is often compromised by their poor biodistribution, as the majority of injected nanoparticles are recognized and captured by macrophages. To address this challenge, we tested the ability of different zwitterionic polymer ligands to avoid nanoparticle capture by macrophages. Semiconductor quantum dots, iron oxide and gold nanoparticles decorated with polyzwitterions were synthesized. Their interactions with proteins and macrophages were investigated in vitro to assess their potential for improved biocompatibility and reduced macrophage uptake. Furthermore, we conducted pharmacokinetic studies on AuNRs functionalized with different types of polyzwitterions. These studies aimed to evaluate the behavior of these functionalized nanoparticles within the body and gain insights into their distribution and clearance pathways
Dragota, Simona Olimpia. „Contributions to the chemistry of higher-coordinate Silicon synthesis, structure, and stereodynamics of new Silicon(IV) complexes with SiO2N2C, SiO4C, or SiO6 skeletons /“. Doctoral thesis, [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=978743571.
Der volle Inhalt der QuelleBishop, Alexander James. „Actinide surface chemistry“. Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/54193/.
Der volle Inhalt der QuelleCooper, Philip Andrew. „Surface chemistry of foams“. Thesis, University of Hull, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335544.
Der volle Inhalt der QuelleBrown, Ken D. „The surface chemistry of beryllium“. Thesis, University of Salford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333978.
Der volle Inhalt der QuelleSirbu, Elena. „Surface chemistry of cellulose nanocrystals“. Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/33308/.
Der volle Inhalt der QuelleZhao, Jun. „Surface Raman spectroscopy : instrumentation and application in surface and corrosion sciences /“. The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487948807588245.
Der volle Inhalt der QuelleLu, Jian Ren. „The surface chemistry of emulsion breakdown“. Thesis, University of Hull, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384850.
Der volle Inhalt der QuelleMcElroy, Daniel. „Grain surface chemistry in molecular clouds“. Thesis, Queen's University Belfast, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.602462.
Der volle Inhalt der QuelleBücher zum Thema "Surface chemistry of zwitterion"
Surface chemistry. Oxford: Oxford University Press, 2001.
Den vollen Inhalt der Quelle findenInc, ebrary, Hrsg. Surface chemistry. Jaipur, India: Oxford Book Co., 2008.
Den vollen Inhalt der Quelle findenMorton, Rosoff, Hrsg. Nano-surface chemistry. New York: Marcel Dekker, 2002.
Den vollen Inhalt der Quelle findenNano-Surface Chemistry. New York: Marcel Dekker, Inc., 2003.
Den vollen Inhalt der Quelle findenV, Churaev N., Muller V. M und Kitchener J. A, Hrsg. Surface forces. New York: Consultants Bureau, 1987.
Den vollen Inhalt der Quelle findenI, Prigogine, und Rice Stuart Alan 1932-, Hrsg. Surface properties. New York: John Wiley and Sons, Inc., 1996.
Den vollen Inhalt der Quelle findenCarley, Albert F., Philip R. Davies, Graham J. Hutchings und Michael S. Spencer, Hrsg. Surface Chemistry and Catalysis. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-6637-0.
Der volle Inhalt der QuelleD, Shchukin E., Hrsg. Colloid and surface chemistry. Amsterdam: Elsevier, 2001.
Den vollen Inhalt der Quelle findenSurface and colloid chemistry. Lexington, KY]: [CreateSpace Independent Publishing Platform], 2014.
Den vollen Inhalt der Quelle findenRideal, Eric Keightley. Introduction to surface chemistry. [Place of publication not identified]: Nash Press, 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Surface chemistry of zwitterion"
Shaabani, Ahmad, Afshin Sarvary und Ali Maleki. „Zwitterions and Zwitterion-Trapping Agents in Isocyanide Chemistry“. In Isocyanide Chemistry, 263–98. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652532.ch8.
Der volle Inhalt der QuelleBare, Simon R., und G. A. Somorjai. „Surface Chemistry“. In Photocatalysis and Environment, 63–189. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3015-5_3.
Der volle Inhalt der QuelleBelsey, N. A., A. G. Shard und C. Minelli. „Surface Chemistry“. In Nanomaterial Characterization, 153–78. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118753460.ch8.
Der volle Inhalt der QuelleChesters, Michael A., und Andrew B. Horn. „Surface Chemistry“. In Low-Temperature Chemistry of the Atmosphere, 219–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79063-8_10.
Der volle Inhalt der QuelleVidal, Alain M., und Eugène Papirer. „Surface Chemistry and Surface Energy of Silicas“. In Advances in Chemistry, 245–55. Washington DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0234.ch012.
Der volle Inhalt der QuelleCaselli, P., T. Stantcheva und E. Herbst. „Grain Surface Chemistry“. In Springer Proceedings in Physics, 479–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-18902-9_85.
Der volle Inhalt der QuelleKoel, B. E., und G. A. Somorjai. „Surface Structural Chemistry“. In Catalysis, 159–218. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-93281-6_3.
Der volle Inhalt der QuelleSchröder, H., und K. L. Kompa. „Laser Surface Chemistry“. In Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 693–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82638-2_129.
Der volle Inhalt der QuellePersson, Per O. Å. „MXene Surface Chemistry“. In 2D Metal Carbides and Nitrides (MXenes), 125–36. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19026-2_8.
Der volle Inhalt der QuelleMorrison, Glenn C. „Indoor Surface Chemistry“. In Handbook of Indoor Air Quality, 885–901. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7680-2_32.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Surface chemistry of zwitterion"
Adila, Ahmed S., Mahmoud Aboushanab, Ahmed Fathy und Muhammad Arif. „An Experimental Investigation of Surface Chemistry of Rocks in the Presence of Surfactants“. In GOTECH. SPE, 2024. http://dx.doi.org/10.2118/219143-ms.
Der volle Inhalt der QuelleChild, Craig M., Michelle Foster, J. E. Ivanecky III, Scott S. Perry und Alan Campion. „Surface Raman spectroscopy as a probe of surface chemistry“. In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, herausgegeben von Janice M. Hicks, Wilson Ho und Hai-Lung Dai. SPIE, 1995. http://dx.doi.org/10.1117/12.221481.
Der volle Inhalt der QuelleNemickas, Gedvinas, Deividas Čereška, Gabrielius Kontenis, Arnas Žemaitis, Greta Merkininkaite, Simas Šakirzanovas und Linas Jonušauskas. „Femtosecond surface structuring: wettability, friction control and surface chemistry“. In Laser-based Micro- and Nanoprocessing XV, herausgegeben von Udo Klotzbach, Rainer Kling und Akira Watanabe. SPIE, 2021. http://dx.doi.org/10.1117/12.2578355.
Der volle Inhalt der QuelleMolchanova (Shumakova), A. N., A. V. Kashkovsky und Ye A. Bondar. „A detailed DSMC surface chemistry model“. In PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4902584.
Der volle Inhalt der QuelleKimball, Gregory M., Nathan S. Lewis und Harry A. Atwater. „Synthesis and surface chemistry of Zn3P2“. In 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922747.
Der volle Inhalt der QuelleLi, Jianquan, und Thomas Litzinger. „Near Surface Chemistry of BTTN/GAP“. In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-3765.
Der volle Inhalt der QuelleNasr-El-Din, H. A., M. B. Al-Otaibi, A. M. Al-Aamri und N. Ginest. „Surface Tension of Completion Brines“. In SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/93421-ms.
Der volle Inhalt der QuellePemberton, Jeanne E. „Surface Raman Scattering as a Probe of Metal Surface Chemistry“. In Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/laca.1992.thb1.
Der volle Inhalt der QuelleJun, Y., V. Boiadjiev, R. Major und Xiao-Yang Zhu. „Novel chemistry for surface engineering in MEMS“. In Micromachining and Microfabrication, herausgegeben von Yuli Vladimirsky und Philip J. Coane. SPIE, 2000. http://dx.doi.org/10.1117/12.395598.
Der volle Inhalt der QuelleBrady, B., und L. Martin. „Modeling multiphase atmospheric chemistry with SURFACE CHEMKIN“. In Space Programs and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-4339.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Surface chemistry of zwitterion"
Husson, Scott M., Viatcheslav Freger und Moshe Herzberg. Antimicrobial and fouling-resistant membranes for treatment of agricultural and municipal wastewater. United States Department of Agriculture, Januar 2013. http://dx.doi.org/10.32747/2013.7598151.bard.
Der volle Inhalt der QuelleWaltenburg, Hanne N., John T. Yates und Jr. Surface Chemistry of Silicon. Fort Belvoir, VA: Defense Technical Information Center, November 1994. http://dx.doi.org/10.21236/ada288893.
Der volle Inhalt der QuelleWei, Jian, V. S. Smentkowski, Jr Yates und J. T. Selected Bibliography II-Diamond Surface Chemistry. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada273518.
Der volle Inhalt der QuelleDuncan, Michael A. Architecture and Surface Chemistry of Compound Nanoclusters. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada567134.
Der volle Inhalt der QuelleCarroll, S. A., W. L. Bourcier und B. L. Phillips. Surface chemistry and durability of borosilicate glass. Office of Scientific and Technical Information (OSTI), Januar 1994. http://dx.doi.org/10.2172/10124135.
Der volle Inhalt der QuelleLi, Gonghu, und Christine Caputo. Surface Molecular Chemistry in Solar Fuel Research. Office of Scientific and Technical Information (OSTI), Mai 2021. http://dx.doi.org/10.2172/1782492.
Der volle Inhalt der QuelleSena, Victoria, Janie Star und Daniel Kelly. Surface Chemistry Analysis of Additively Manufactured Titanium. Office of Scientific and Technical Information (OSTI), Mai 2022. http://dx.doi.org/10.2172/1867165.
Der volle Inhalt der QuelleSholl, David. Quantum Chemistry for Surface Segregation in Metal Alloys. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/1109080.
Der volle Inhalt der QuelleFedin, Igor. Colloidal Semiconductor Nanocrystals: Surface Chemistry, Photonics, and Electronics. Office of Scientific and Technical Information (OSTI), Februar 2020. http://dx.doi.org/10.2172/1599021.
Der volle Inhalt der QuelleFedin, Igor. Colloidal Semiconductor Nanocrystals: Surface Chemistry, Photonics, and Electronics. Office of Scientific and Technical Information (OSTI), Februar 2020. http://dx.doi.org/10.2172/1601369.
Der volle Inhalt der Quelle