Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Surface brightness temperature“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Surface brightness temperature" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Surface brightness temperature"
Yin, Chuan, Ming Zhang und Yaming Bo. „Multilayer Brightness Temperature Tracing Method for Rough Surface Scene Simulation in Passive Millimeter-Wave Imaging“. International Journal of Antennas and Propagation 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/6763182.
Der volle Inhalt der QuelleShi, Jiu Xi, Jin Song Deng und Xiao Ming Wang. „Characteristic Analysis of Rural Environment Temperature Field“. Advanced Materials Research 807-809 (September 2013): 14–19. http://dx.doi.org/10.4028/www.scientific.net/amr.807-809.14.
Der volle Inhalt der QuelleHolbach, Heather M., Eric W. Uhlhorn und Mark A. Bourassa. „Off-Nadir SFMR Brightness Temperature Measurements in High-Wind Conditions“. Journal of Atmospheric and Oceanic Technology 35, Nr. 9 (September 2018): 1865–79. http://dx.doi.org/10.1175/jtech-d-18-0005.1.
Der volle Inhalt der QuelleYang, Xiao Feng, und Xing Ping Wen. „Evaluation of Land Surface Temperature Retrieved from MODIS Data“. Advanced Materials Research 785-786 (September 2013): 1333–36. http://dx.doi.org/10.4028/www.scientific.net/amr.785-786.1333.
Der volle Inhalt der QuelleWinebrenner, Dale P., Eric J. Steig und David P. Schneider. „Temporal co-variation of surface and microwave brightness temperatures in Antarctica, with implications for the observation of surface temperature variability using satellite data“. Annals of Glaciology 39 (2004): 346–50. http://dx.doi.org/10.3189/172756404781813952.
Der volle Inhalt der QuelleSherjal, I., und M. Fily. „Temporal variations of microwave brightness temperatures over Antarctica“. Annals of Glaciology 20 (1994): 19–25. http://dx.doi.org/10.3189/1994aog20-1-19-25.
Der volle Inhalt der QuelleSherjal, I., und M. Fily. „Temporal variations of microwave brightness temperatures over Antarctica“. Annals of Glaciology 20 (1994): 19–25. http://dx.doi.org/10.1017/s0260305500016177.
Der volle Inhalt der QuelleStephen, H., S. Ahmad und T. C. Piechota. „Land Surface Brightness Temperature Modeling Using Solar Insolation“. IEEE Transactions on Geoscience and Remote Sensing 48, Nr. 1 (Januar 2010): 491–98. http://dx.doi.org/10.1109/tgrs.2009.2026893.
Der volle Inhalt der QuelleGaustad, John E. „Temperature and brightness variations on Betelgeuse“. Symposium - International Astronomical Union 118 (1986): 449–50. http://dx.doi.org/10.1017/s0074180900151885.
Der volle Inhalt der QuelleChen, Xiuzhi, Yongxian Su, Yong Li, Liusheng Han, Jishan Liao und Shenbin Yang. „Retrieving China’s surface soil moisture and land surface temperature using AMSR-E brightness temperatures“. Remote Sensing Letters 5, Nr. 7 (03.07.2014): 662–71. http://dx.doi.org/10.1080/2150704x.2014.960610.
Der volle Inhalt der QuelleDissertationen zum Thema "Surface brightness temperature"
McAtee, Brendon Kynnie. „Surface-atmosphere interactions in the thermal infrared (8 - 14um)“. Thesis, Curtin University, 2003. http://hdl.handle.net/20.500.11937/408.
Der volle Inhalt der QuelleMcAtee, Brendon Kynnie. „Surface-atmosphere interactions in the thermal infrared (8 - 14um)“. Curtin University of Technology, Department of Applied Physics, 2003. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=14481.
Der volle Inhalt der QuelleInvestigation of the change in surface-leaving radiance as the zenith angle of observation varies is then also important in developing a better understanding of the radiative interaction between the land surface and the atmosphere. The work in this study investigates the atmospheric impacts using surface brightness temperature measurements from the ATSR-2 satellite sensor in combination with atmospheric profile data from radiosondes and estimates of the downwelling sky radiance made by a ground-based radiometer. A line-by-line radiative transfer model is used to model the angular impacts of the atmosphere upon the surfaceleaving radiance. Results from the modelling work show that if the magnitude of the upwelling and downwelling sky radiance and atmospheric transmittance are accurately known then the surface-emitted radiance and hence the LST may be retrieved with negligible error. Guided by the outcomes of the modelling work an atmospheric correction term is derived which accounts for absorption and emission by the atmosphere, and is based on the viewing geometry of the satellite sensor and atmospheric properties characteristic of a semi-arid field site near Alice Springs in the Northern Territory (Central Australia). Ground-based angular measurements of surface brightness temperature made by a scanning, self calibrating radiometer situated at this field site are then used to investigate how the surface-leaving radiance varies over a range of zenith angles comparable to that of the ATSR-2 satellite sensor.
Well defined cycles in the angular dependence of surface brightness temperature were observed on both diumal and seasonal timescales in these data. The observed cycles in surface brightness temperature are explained in terms of the interaction between the downwelling sky radiance and the angular dependence of the surface emissivity. The angular surface brightness temperature and surface emissivity information is then applied to derive an LST estimate of high accuracy (approx. 1 K at night and 1-2 K during the day), suitable for the validation of satellite-derived LST measurements. Finally, the atmospheric and land surface components of this work are combined to describe surface-atmosphere interaction at the field site. Algorithms are derived for the satellite retrieval of LST for the nadir and forward viewing geometries of the ATSR-2 sensor, based upon the cycles in the angular dependence of surface brightness temperature observed in situ and the atmospheric correction term developed from the modelling of radiative transfer in the atmosphere. A qualitative assessment of the performance of these algorithms indicates they may obtain comparable accuracy to existing dual angle algorithms (approx. 1.5 K) in the ideal case and an accuracy of 3-4 K in practice, which is limited by knowledge of atmospheric properties (eg downwelling sky radiance and atmospheric transmittance), and the surface emissivity. There are, however, strong prospects of enhanced performance given better estimates of these physical quantities, and if coefficients within the retrieval algorithms are determined over a wider range of observation zenith angles in the future.
Zhang, Shuting. „Angular effects of surface brightness temperature observed from Sentinel-3A/SLSTR data“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD055.
Der volle Inhalt der QuelleThis study adopts SLSTR TIR data as the main data source and retrieves surface brightness temperature using split-window algorithm to analyze the angular effect of surface brightness temperature (SBT). Based on the simulation database, SBT retrieval method is developed and applied to SLSTR dual-angle SBT extraction. Then the magnitude and characteristics of SBT differences between nadir and oblique views were observed, considering factors such as land use/land cover, season, latitude and climate. Finally, GeoDetector tool was used to perform attribution analysis of SBT angular effects
Van, den Bergh F., Wyk MA Van, Wyk BJ Van und G. Udahemuka. „A comparison of data-driven and model-driven approaches to brightness temperature diurnal cycle interpolation“. SAIEE Africa Research Journal, 2007. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001082.
Der volle Inhalt der QuelleHu, Tian. „Thermal Directionality Study and Application of Thermal Radiation to Drought Monitoring“. Thesis, Griffith University, 2020. http://hdl.handle.net/10072/392051.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Dupont, Florent. „Télédétection micro-onde de surfaces enneigées en milieu arctique : étude des processus de surface de la calotte glaciaire Barnes, Nunavut, Canada“. Thèse, Université de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/5306.
Der volle Inhalt der QuelleBücher zum Thema "Surface brightness temperature"
D, Conner Mark, und United States. National Aeronautics and Space Administration., Hrsg. Identification and classification of transient signatures in over-land SSM/I imagery. [Washington, DC: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. A well-calibrated ocean algorithm for special sensor microwave/imager. [Washington, DC: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. A well-calibrated ocean algorithm for special sensor microwave/imager. [Washington, DC: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. A well-calibrated ocean algorithm for special sensor microwave/imager. [Washington, DC: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Deriving earth science products from SSM/I: Progress report for contract NASW-4714, August 1993 through January 1995. Santa Rosa, CA: Remote Sensing Systems, 1995.
Den vollen Inhalt der Quelle findenK, Moore Richard, und United States. National Aeronautics and Space Administration., Hrsg. Correction of WindScat scatterometric measurements by combining with AMSR radiometric data. Lawrence, Kan: Radar Systems and Remote Sensing Laboratory, University of Kansas Center for Research, 1996.
Den vollen Inhalt der Quelle findenRadiometric correction of scatterometric wind measurements. Lawrence, KS: Radar Systems and Remote Sensing Laboratory, Dept. of Electrical Engineering and Computer Science, University of Kansas, 1995.
Den vollen Inhalt der Quelle findenCalculations of microwave brightness temperature of rough soil surfaces: Bare field. [Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1985.
Den vollen Inhalt der Quelle findenCalculations of microwave brightness temperature of rough soil surfaces: Bare field. [Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1985.
Den vollen Inhalt der Quelle findenCalculations of microwave brightness temperature of rough soil surfaces: Bare field. [Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Surface brightness temperature"
Grankov, Alexander G., und Alexander A. Milshin. „Influence of Horizontal Heat Transfer in the Atmosphere Boundary Layer on the Relationship Between the SOA’s Brightness Temperature and Surface Heat Fluxes: Modeling“. In Microwave Radiation of the Ocean-Atmosphere, 73–84. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21647-8_5.
Der volle Inhalt der QuelleVincent, Warwick F. „3. Sunlight and motion“. In Lakes: A Very Short Introduction, 26–47. Oxford University Press, 2018. http://dx.doi.org/10.1093/actrade/9780198766735.003.0003.
Der volle Inhalt der QuelleValero, Mario M., Adam K. Kochanski und Craig B. Clements. „Remote characterization of fire behavior during the FireFlux II experiment“. In Advances in Forest Fire Research 2022, 338–42. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_54.
Der volle Inhalt der QuelleOstlie, Dale A. „Measuring the Stars“. In Astronomy: The Human Quest for Understanding, 589–637. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780198825821.003.0015.
Der volle Inhalt der QuelleHoyt, Douglas V., und Kenneth H. Shatten. „Storms“. In The Role of the Sun in Climate Change. Oxford University Press, 1997. http://dx.doi.org/10.1093/oso/9780195094138.003.0011.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Surface brightness temperature"
„Land surface brightness temperature retrieved from Landsat data“. In 21st International Congress on Modelling and Simulation (MODSIM2015). Modelling and Simulation Society of Australia and New Zealand, 2015. http://dx.doi.org/10.36334/modsim.2015.l11.li.
Der volle Inhalt der QuelleZhang, Xiaodong, Ji Zhou und Changming Yin. „Direct estimation of 1-KM land surface temperature from AMSR2 brightness temperature“. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017. http://dx.doi.org/10.1109/igarss.2017.8128087.
Der volle Inhalt der QuelleJiao, Zhong-Hu, Guangjian Yan, Tianxing Wang, Xihan Mu und Jing Zhao. „Modeling Surface Thermal Anisotropy Using Brightness Temperature over Complex Terrains“. In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. http://dx.doi.org/10.1109/igarss.2018.8518497.
Der volle Inhalt der QuelleChen, Fu, Yuanwen Zeng und Shuang Liang. „Relationship between Specific Surface Parameters and Brightness Temperature in Metropolitan Area“. In The International Conference on Remote Sensing,Environment and Transportation Engineering. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/rsete.2013.167.
Der volle Inhalt der QuelleZhou, Siyuan, Hongyu Xu, Xianchen Zhang und Weidong Hu. „Lunar surface radiation brightness temperature simulation for FY-4 lunar calibration“. In 2021 14th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT). IEEE, 2021. http://dx.doi.org/10.1109/ucmmt53364.2021.9569894.
Der volle Inhalt der QuelleEntekhabi, Dara, und Andrew F. Feldman. „Evaluating Brightness Temperature Information for Estimating Microwave Land Surface and Vegetation Properties“. In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8900274.
Der volle Inhalt der QuelleFreedman, A., D. McWatters und M. Spencer. „The Aquarius Scatterometer: An Active System for Measuring Surface Roughness for Sea-Surface Brightness Temperature Correction“. In 2006 IEEE International Symposium on Geoscience and Remote Sensing. IEEE, 2006. http://dx.doi.org/10.1109/igarss.2006.436.
Der volle Inhalt der QuelleHenocq, C., J. Boutin, F. Petitcolin, S. Arnault und P. Lattes. „Vertical variability of Sea Surface Salinity and influence on L-band brightness temperature“. In 2007 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2007. http://dx.doi.org/10.1109/igarss.2007.4422966.
Der volle Inhalt der QuellePeng, Bin, Jiancheng Shi, Yonghui Lei, Tianjie Zhao und Dongyang Li. „Dual state-parameter estimation of land surface model through assimilating microwave brightness temperature“. In SPIE Asia-Pacific Remote Sensing, herausgegeben von Thomas J. Jackson, Jing Ming Chen, Peng Gong und Shunlin Liang. SPIE, 2014. http://dx.doi.org/10.1117/12.2069608.
Der volle Inhalt der QuelleSong, Chengyun, Li Jia und Massimo Menenti. „A method for retrieving high-resolution surface soil moisture by downscaling AMSR-E brightness temperature“. In IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6351461.
Der volle Inhalt der Quelle