Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Superquantiles“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Superquantiles" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Superquantiles"
Rio, Emmanuel. „Upper bounds for superquantiles of martingales“. Comptes Rendus. Mathématique 359, Nr. 7 (17.09.2021): 813–22. http://dx.doi.org/10.5802/crmath.207.
Der volle Inhalt der QuelleLaguel, Yassine, Krishna Pillutla, Jérôme Malick und Zaid Harchaoui. „Superquantiles at Work: Machine Learning Applications and Efficient Subgradient Computation“. Set-Valued and Variational Analysis 29, Nr. 4 (Dezember 2021): 967–96. http://dx.doi.org/10.1007/s11228-021-00609-w.
Der volle Inhalt der QuelleKala, Zdeněk. „Global Sensitivity Analysis of Quantiles: New Importance Measure Based on Superquantiles and Subquantiles“. Symmetry 13, Nr. 2 (04.02.2021): 263. http://dx.doi.org/10.3390/sym13020263.
Der volle Inhalt der QuelleDedecker, Jérôme, und Florence Merlevède. „Central limit theorem and almost sure results for the empirical estimator of superquantiles/CVaR in the stationary case“. Statistics 56, Nr. 1 (02.01.2022): 53–72. http://dx.doi.org/10.1080/02331888.2022.2043325.
Der volle Inhalt der QuelleMafusalov, Alexander, und Stan Uryasev. „CVaR (superquantile) norm: Stochastic case“. European Journal of Operational Research 249, Nr. 1 (Februar 2016): 200–208. http://dx.doi.org/10.1016/j.ejor.2015.09.058.
Der volle Inhalt der QuelleRockafellar, R. Tyrrell, und Johannes O. Royset. „Superquantile/CVaR risk measures: second-order theory“. Annals of Operations Research 262, Nr. 1 (09.02.2016): 3–28. http://dx.doi.org/10.1007/s10479-016-2129-0.
Der volle Inhalt der QuelleLaguel, Yassine, Jérôme Malick und Zaid Harchaoui. „Superquantile-Based Learning: A Direct Approach Using Gradient-Based Optimization“. Journal of Signal Processing Systems 94, Nr. 2 (11.01.2022): 161–77. http://dx.doi.org/10.1007/s11265-021-01716-5.
Der volle Inhalt der QuelleRockafellar, R. T., J. O. Royset und S. I. Miranda. „Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk“. European Journal of Operational Research 234, Nr. 1 (April 2014): 140–54. http://dx.doi.org/10.1016/j.ejor.2013.10.046.
Der volle Inhalt der QuelleGolodnikov, Kuzmenko und Uryasev. „CVaR Regression Based on the Relation between CVaR and Mixed-Quantile Quadrangles“. Journal of Risk and Financial Management 12, Nr. 3 (26.06.2019): 107. http://dx.doi.org/10.3390/jrfm12030107.
Der volle Inhalt der QuelleLabopin-Richard, T., F. Gamboa, A. Garivier und B. Iooss. „Bregman superquantiles. Estimation methods and applications“. Dependence Modeling 4, Nr. 1 (11.03.2016). http://dx.doi.org/10.1515/demo-2016-0004.
Der volle Inhalt der QuelleDissertationen zum Thema "Superquantiles"
Thurin, Gauthier. „Quantiles multivariés et transport optimal régularisé“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0262.
Der volle Inhalt der QuelleThis thesis is concerned with the study of the Monge-Kantorovich quantile function. We first address the crucial question of its estimation, which amounts to solve an optimal transport problem. In particular, we try to take advantage of the knowledge of the reference distribution, that represents additional information compared with the usual algorithms, and which allows us to parameterize the transport potentials by their Fourier series. Doing so, entropic regularization provides two advantages: to build an efficient and convergent algorithm for solving the semi-dual version of our problem, and to obtain a smooth and monotonic empirical quantile function. These considerations are then extended to the study of spherical data, by replacing the Fourier series with spherical harmonics, and by generalizing the entropic map to this non-Euclidean setting. The second main purpose of this thesis is to define new notions of multivariate superquantiles and expected shortfalls, to complement the information provided by the quantiles. These functions characterize the law of a random vector, as well as convergence in distribution under certain assumptions, and have direct applications in multivariate risk analysis, to extend the traditional risk measures of Value-at-Risk and Conditional-Value-at-Risk
Miranda, Sofia I. „Superquantile regression: theory, algorithms, and applications“. Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/44618.
Der volle Inhalt der QuelleWe present a novel regression framework centered on a coherent and averse measure of risk, the superquantile risk (also called conditional value-at-risk), which yields more conservatively fitted curves than classical least squares and quantile regressions. In contracts to other generalized regression techniques that approximate conditional superquantiles by various combinations of conditional quantiles, we directly and inperfect analog to classical regressional obtain superquantile regression functions as optimal solutions of certain error minimization problems. We show the existence and possible uniqueness of regression functions, discuss the stability of regression functions under perturbations and approximation of the underlying data, and propose an extension of the coefficient of determination R-squared and Cook’s distance for assessing the goodness of fit for both quantile and superquantile regression models. We present two classes of computational methods for solving the superquantile regression problem, compare both methods’ complexity, and illustrate the methodology in eight numerical examples in the areas of military applications, concerning mission employment of U.S. Navy helicopter pilots and Portuguese Navy submarines, reliability engineering, uncertainty quantification, and financial risk management.
Buchteile zum Thema "Superquantiles"
Miranda, Sofia Isabel. „Applying Superquantile Regression to a Real-World Problem: Submariners Effort Index Analysis“. In Studies in Big Data, 115–22. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24154-8_14.
Der volle Inhalt der QuelleRockafellar, R. Tyrrell, und Johannes O. Royset. „Superquantiles and Their Applications to Risk, Random Variables, and Regression“. In Theory Driven by Influential Applications, 151–67. INFORMS, 2013. http://dx.doi.org/10.1287/educ.2013.0111.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Superquantiles"
Laguel, Yassine, Jerome Malick und Zaid Harchaoui. „First-Order Optimization for Superquantile-Based Supervised Learning“. In 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2020. http://dx.doi.org/10.1109/mlsp49062.2020.9231909.
Der volle Inhalt der QuelleLaguel, Yassine, Krishna Pillutla, Jerome Malick und Zaid Harchaoui. „A Superquantile Approach to Federated Learning with Heterogeneous Devices“. In 2021 55th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2021. http://dx.doi.org/10.1109/ciss50987.2021.9400318.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Superquantiles"
Rockafellar, R. T., und Johannes O. Royset. Superquantile/CVaR Risk Measures: Second-Order Theory. Fort Belvoir, VA: Defense Technical Information Center, Juli 2014. http://dx.doi.org/10.21236/ada615948.
Der volle Inhalt der QuelleRockafellar, R. T., und Johannes O. Royset. Superquantile/CVaR Risk Measures: Second-Order Theory. Fort Belvoir, VA: Defense Technical Information Center, Juli 2015. http://dx.doi.org/10.21236/ada627217.
Der volle Inhalt der Quelle