Zeitschriftenartikel zum Thema „Superconcentrated electrolyte“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Superconcentrated electrolyte" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Klorman, Jake A., und Kah Chun Lau. „The Relevance of Lithium Salt Solvate Crystals in Superconcentrated Electrolytes in Lithium Batteries“. Energies 16, Nr. 9 (26.04.2023): 3700. http://dx.doi.org/10.3390/en16093700.
Der volle Inhalt der QuelleTian, Zengying, Wenjun Deng, Xusheng Wang, Chunyi Liu, Chang Li, Jitao Chen, Mianqi Xue, Rui Li und Feng Pan. „Superconcentrated aqueous electrolyte to enhance energy density for advanced supercapacitors“. Functional Materials Letters 10, Nr. 06 (Dezember 2017): 1750081. http://dx.doi.org/10.1142/s1793604717500813.
Der volle Inhalt der QuelleYang, Chongyin, Liumin Suo, Oleg Borodin, Fei Wang, Wei Sun, Tao Gao, Xiulin Fan et al. „Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility“. Proceedings of the National Academy of Sciences 114, Nr. 24 (31.05.2017): 6197–202. http://dx.doi.org/10.1073/pnas.1703937114.
Der volle Inhalt der QuelleDubouis, Nicolas, Pierre Lemaire, Boris Mirvaux, Elodie Salager, Michael Deschamps und Alexis Grimaud. „The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “Water-in-Salt” electrolytes“. Energy & Environmental Science 11, Nr. 12 (2018): 3491–99. http://dx.doi.org/10.1039/c8ee02456a.
Der volle Inhalt der QuellePal, Urbi, Fangfang Chen, Derick Gyabang, Thushan Pathirana, Binayak Roy, Robert Kerr, Douglas R. MacFarlane, Michel Armand, Patrick C. Howlett und Maria Forsyth. „Enhanced ion transport in an ether aided super concentrated ionic liquid electrolyte for long-life practical lithium metal battery applications“. Journal of Materials Chemistry A 8, Nr. 36 (2020): 18826–39. http://dx.doi.org/10.1039/d0ta06344d.
Der volle Inhalt der QuelleRakov, Dmitrii. „(Best Student Presentation) Is Solid-Electrolyte Interphase Formation Affected by Electrode Conductivity?“ ECS Meeting Abstracts MA2023-01, Nr. 5 (28.08.2023): 873. http://dx.doi.org/10.1149/ma2023-015873mtgabs.
Der volle Inhalt der QuelleWang, Weijian, Wenjun Deng, Xusheng Wang, Yibo Li, Zhuqing Zhou, Zongxiang Hu, Mianqi Xue und Rui Li. „A hybrid superconcentrated electrolyte enables 2.5 V carbon-based supercapacitors“. Chemical Communications 56, Nr. 57 (2020): 7965–68. http://dx.doi.org/10.1039/d0cc02040k.
Der volle Inhalt der QuelleYamada, Yuki, Makoto Yaegashi, Takeshi Abe und Atsuo Yamada. „A superconcentrated ether electrolyte for fast-charging Li-ion batteries“. Chemical Communications 49, Nr. 95 (2013): 11194. http://dx.doi.org/10.1039/c3cc46665e.
Der volle Inhalt der QuelleLundgren, Henrik, Johan Scheers, Mårten Behm und Göran Lindbergh. „Characterization of the Mass-Transport Phenomena in a Superconcentrated LiTFSI:Acetonitrile Electrolyte“. Journal of The Electrochemical Society 162, Nr. 7 (2015): A1334—A1340. http://dx.doi.org/10.1149/2.0961507jes.
Der volle Inhalt der QuelleSun, Ju, Luke A. O’Dell, Michel Armand, Patrick C. Howlett und Maria Forsyth. „Anion-Derived Solid-Electrolyte Interphase Enables Long Life Na-Ion Batteries Using Superconcentrated Ionic Liquid Electrolytes“. ACS Energy Letters 6, Nr. 7 (14.06.2021): 2481–90. http://dx.doi.org/10.1021/acsenergylett.1c00816.
Der volle Inhalt der QuelleWang, Andrew A., Anna B. Gunnarsdóttir, Jack Fawdon, Mauro Pasta, Clare P. Grey und Charles W. Monroe. „Potentiometric MRI of a Superconcentrated Lithium Electrolyte: Testing the Irreversible Thermodynamics Approach“. ACS Energy Letters 6, Nr. 9 (15.08.2021): 3086–95. http://dx.doi.org/10.1021/acsenergylett.1c01213.
Der volle Inhalt der QuelleChen, Long, Jiaxun Zhang, Qin Li, Jenel Vatamanu, Xiao Ji, Travis P. Pollard, Chunyu Cui et al. „A 63 m Superconcentrated Aqueous Electrolyte for High-Energy Li-Ion Batteries“. ACS Energy Letters 5, Nr. 3 (27.02.2020): 968–74. http://dx.doi.org/10.1021/acsenergylett.0c00348.
Der volle Inhalt der QuelleDeng, Wenjun, Xusheng Wang, Chunyi Liu, Chang Li, Jitao Chen, Nan Zhu, Rui Li und Mianqi Xue. „Li/K mixed superconcentrated aqueous electrolyte enables high-performance hybrid aqueous supercapacitors“. Energy Storage Materials 20 (Juli 2019): 373–79. http://dx.doi.org/10.1016/j.ensm.2018.10.023.
Der volle Inhalt der QuelleShiga, Tohru, Yumi Masuoka und Yuichi Kato. „Competition between Conversion Reaction with Cerium Dioxide and Lithium Plating in Superconcentrated Electrolyte“. Langmuir 36, Nr. 46 (11.11.2020): 14039–45. http://dx.doi.org/10.1021/acs.langmuir.0c02622.
Der volle Inhalt der QuelleRakov, Dmitrii. „(Digital Presentation) Importance of Electrified Interfaces in Researchable Metal Anode Batteries: Ionic Liquid Electrolyte Composition and Electrode Preconditioning“. ECS Meeting Abstracts MA2022-02, Nr. 1 (09.10.2022): 90. http://dx.doi.org/10.1149/ma2022-02190mtgabs.
Der volle Inhalt der QuelleLi, Yibo, Zhuqing Zhou, Wenjun Deng, Chang Li, Xinran Yuan, Jun Hu, Man Zhang, Haibiao Chen und Rui Li. „A Superconcentrated Water‐in‐Salt Hydrogel Electrolyte for High‐Voltage Aqueous Potassium‐Ion Batteries“. ChemElectroChem 8, Nr. 8 (18.02.2021): 1451–54. http://dx.doi.org/10.1002/celc.202001509.
Der volle Inhalt der QuelleLee, ChangHee, und Soon-Ki Jeong. „A Novel Superconcentrated Aqueous Electrolyte to Improve the Electrochemical Performance of Calcium-ion Batteries“. Chemistry Letters 45, Nr. 12 (05.12.2016): 1447–49. http://dx.doi.org/10.1246/cl.160769.
Der volle Inhalt der QuelleOkoshi, Masaki, Chien-Pin Chou und Hiromi Nakai. „Theoretical Analysis of Carrier Ion Diffusion in Superconcentrated Electrolyte Solutions for Sodium-Ion Batteries“. Journal of Physical Chemistry B 122, Nr. 9 (12.02.2018): 2600–2609. http://dx.doi.org/10.1021/acs.jpcb.7b10589.
Der volle Inhalt der QuelleDhattarwal, Harender Singh, Yun-Wen Chen, Jer-Lai Kuo und Hemant Kumar Kashyap. „Mechanistic Insight on the Solid Electrolyte Interphase (SEI) Formed By a Superconcentrated [Li][TFSI] in Acetonitrile Electrolyte Near Lithium Metal“. ECS Meeting Abstracts MA2021-02, Nr. 3 (19.10.2021): 406. http://dx.doi.org/10.1149/ma2021-023406mtgabs.
Der volle Inhalt der QuelleZhang, Man, Weijian Wang, Xianhui Liang, Chang Li, Wenjun Deng, Haibiao Chen und Rui Li. „Promoting operating voltage to 2.3 V by a superconcentrated aqueous electrolyte in carbon-based supercapacitor“. Chinese Chemical Letters 32, Nr. 7 (Juli 2021): 2217–21. http://dx.doi.org/10.1016/j.cclet.2020.12.017.
Der volle Inhalt der QuelleDupre, Nicolas, Khryslyn Arano, Robert Kerr, Bernard Lestriez, Jean Le Bideau, Patrick C. Howlett, Maria Forsyth und Dominique Guyomard. „(Invited) Tuning the Formation and Structure of the Silicon Electrode/Electrolyte Interphase in Superconcentrated Ionic Liquids“. ECS Meeting Abstracts MA2021-02, Nr. 2 (19.10.2021): 224. http://dx.doi.org/10.1149/ma2021-022224mtgabs.
Der volle Inhalt der QuellePeriyapperuma, Kalani, Elisabetta Arca, Steven Harvey, Thushan Pathirana, Chunmei Ban, Anthony Burrell, Cristina Pozo-Gonzalo und Patrick C. Howlett. „High Current Cycling in a Superconcentrated Ionic Liquid Electrolyte to Promote Uniform Li Morphology and a Uniform LiF-Rich Solid Electrolyte Interphase“. ACS Applied Materials & Interfaces 12, Nr. 37 (02.09.2020): 42236–47. http://dx.doi.org/10.1021/acsami.0c09074.
Der volle Inhalt der QuelleDhattarwal, Harender S., Yun-Wen Chen, Jer-Lai Kuo und Hemant K. Kashyap. „Mechanistic Insight on the Formation of a Solid Electrolyte Interphase (SEI) by an Acetonitrile-Based Superconcentrated [Li][TFSI] Electrolyte near Lithium Metal“. Journal of Physical Chemistry C 124, Nr. 50 (08.12.2020): 27495–502. http://dx.doi.org/10.1021/acs.jpcc.0c08009.
Der volle Inhalt der QuelleArano, Khryslyn, Srdan Begic, Fangfang Chen, Dmitrii Rakov, Driss Mazouzi, Nicolas Gautier, Robert Kerr et al. „Tuning the Formation and Structure of the Silicon Electrode/Ionic Liquid Electrolyte Interphase in Superconcentrated Ionic Liquids“. ACS Applied Materials & Interfaces 13, Nr. 24 (11.06.2021): 28281–94. http://dx.doi.org/10.1021/acsami.1c06465.
Der volle Inhalt der QuelleZeng, Pan, Yamiao Han, Xiaobo Duan, Guichong Jia, Liwu Huang und Yungui Chen. „A stable graphite electrode in superconcentrated LiTFSI-DME/DOL electrolyte and its application in lithium-sulfur full battery“. Materials Research Bulletin 95 (November 2017): 61–70. http://dx.doi.org/10.1016/j.materresbull.2017.07.018.
Der volle Inhalt der QuelleLi, Yibo, Zhuqing Zhou, Wenjun Deng, Chang Li, Xinran Yuan, Jun Hu, Man Zhang, Haibiao Chen und Rui Li. „Cover Feature: A Superconcentrated Water‐in‐Salt Hydrogel Electrolyte for High‐Voltage Aqueous Potassium‐Ion Batteries (ChemElectroChem 8/2021)“. ChemElectroChem 8, Nr. 8 (22.03.2021): 1389. http://dx.doi.org/10.1002/celc.202100324.
Der volle Inhalt der QuelleLee, Eun Goo, Jintaek Park, Sung-Eun Lee, Junhee Lee, Changik Im, Gayeong Yoo, Jeeyoung Yoo und Youn Sang Kim. „Superconcentrated aqueous electrolyte and UV curable polymer composite as gate dielectric for high-performance oxide semiconductor thin-film transistors“. Applied Physics Letters 114, Nr. 17 (29.04.2019): 172903. http://dx.doi.org/10.1063/1.5093741.
Der volle Inhalt der QuelleFerdousi, Shammi A., Matthias Hilder, Andrew Basile, Haijin Zhu, Luke A. O'Dell, Damien Saurel, Teofilo Rojo, Michel Armand, Maria Forsyth und Patrick C. Howlett. „Water as an Effective Additive for High‐Energy‐Density Na Metal Batteries? Studies in a Superconcentrated Ionic Liquid Electrolyte“. ChemSusChem 12, Nr. 8 (28.03.2019): 1700–1711. http://dx.doi.org/10.1002/cssc.201802988.
Der volle Inhalt der QuelleGossage, Zachary Tyson, Nanako Ito, Tomooki Hosaka, Ryoichi Tatara und Shinichi Komaba. „Understanding the Development and Properties of SEI in Concentrated Aqueous Electrolytes Via Scanning Electrochemical Microscopy“. ECS Meeting Abstracts MA2023-02, Nr. 60 (22.12.2023): 2900. http://dx.doi.org/10.1149/ma2023-02602900mtgabs.
Der volle Inhalt der QuellePham, Ngan K., Tuyen T. T. Truong, Kha Minh Le, Tuyen Thi Kim Huynh, Man V. Tran und Phung Le. „Nonflammable Sulfone-Based Electrolytes for Achieving High-Voltage Li-Ion Batteries Using LiNi0.5Mn1.5O4 Cathode Material“. ECS Meeting Abstracts MA2022-01, Nr. 2 (07.07.2022): 291. http://dx.doi.org/10.1149/ma2022-012291mtgabs.
Der volle Inhalt der QuellePathirana, Thushan, Dmitrii A. Rakov, Fangfang Chen, Maria Forsyth, Robert Kerr und Patrick C. Howlett. „Improving Cycle Life through Fast Formation Using a Superconcentrated Phosphonium Based Ionic Liquid Electrolyte for Anode-Free and Lithium Metal Batteries“. ACS Applied Energy Materials 4, Nr. 7 (02.07.2021): 6399–407. http://dx.doi.org/10.1021/acsaem.1c01641.
Der volle Inhalt der QuelleTang, Peiyuan, Yi Cao und Wenfeng Qiu. „Preparation and Properties of an Ultrahigh-Energy-Density Aqueous Supercapacitor with a Superconcentrated Electrolyte and a Sr-Modified Lanthanum Zirconate Flexible Electrode“. ACS Omega 6, Nr. 38 (20.09.2021): 24720–30. http://dx.doi.org/10.1021/acsomega.1c03486.
Der volle Inhalt der QuelleYamada, Yuki, und Atsuo Yamada. „Review—Superconcentrated Electrolytes for Lithium Batteries“. Journal of The Electrochemical Society 162, Nr. 14 (2015): A2406—A2423. http://dx.doi.org/10.1149/2.0041514jes.
Der volle Inhalt der QuelleSelf, Julian, Kara D. Fong und Kristin A. Persson. „Transport in Superconcentrated LiPF6 and LiBF4/Propylene Carbonate Electrolytes“. ACS Energy Letters 4, Nr. 12 (06.11.2019): 2843–49. http://dx.doi.org/10.1021/acsenergylett.9b02118.
Der volle Inhalt der QuelleGenereux, Simon, Valérie Gariépy und Dominic Rochefort. „Impact of Water on the Properties of Superconcentrated Electrolytes“. ECS Meeting Abstracts MA2020-02, Nr. 4 (23.11.2020): 670. http://dx.doi.org/10.1149/ma2020-024670mtgabs.
Der volle Inhalt der QuelleYamada, Yuki, Ching Hua Chiang, Keitaro Sodeyama, Jianhui Wang, Yoshitaka Tateyama und Atsuo Yamada. „Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes“. ChemElectroChem 2, Nr. 11 (31.07.2015): 1687–94. http://dx.doi.org/10.1002/celc.201500235.
Der volle Inhalt der QuelleYamada, Yuki, Ching Hua Chiang, Keitaro Sodeyama, Jianhui Wang, Yoshitaka Tateyama und Atsuo Yamada. „Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes“. ChemElectroChem 2, Nr. 11 (12.10.2015): 1627. http://dx.doi.org/10.1002/celc.201500426.
Der volle Inhalt der QuelleCiurduc, Diana Elena, Nicola Boaretto, Juan P. Fernández-Blázquez und Rebeca Marcilla. „Development of high performing polymer electrolytes based on superconcentrated solutions“. Journal of Power Sources 506 (September 2021): 230220. http://dx.doi.org/10.1016/j.jpowsour.2021.230220.
Der volle Inhalt der QuelleYAMADA, Yuki. „Developing New Functionalities of Superconcentrated Electrolytes for Lithium-ion Batteries“. Electrochemistry 85, Nr. 9 (2017): 559–65. http://dx.doi.org/10.5796/electrochemistry.85.559.
Der volle Inhalt der QuelleGénéreux, Simon, Valérie Gariépy und Dominic Rochefort. „Impact of Water on the Properties of Litfsi-Acetonitrile Superconcentrated Electrolytes“. ECS Meeting Abstracts MA2020-01, Nr. 4 (01.05.2020): 556. http://dx.doi.org/10.1149/ma2020-014556mtgabs.
Der volle Inhalt der QuelleKim, Jungyu, Bonhyeop Koo, Joonhyung Lim, Jonggu Jeon, Chaiho Lim, Hochun Lee, Kyungwon Kwak und Minhaeng Cho. „Dynamic Water Promotes Lithium-Ion Transport in Superconcentrated and Eutectic Aqueous Electrolytes“. ACS Energy Letters 7, Nr. 1 (10.12.2021): 189–96. http://dx.doi.org/10.1021/acsenergylett.1c02012.
Der volle Inhalt der QuelleDroguet, Léa, Gustavo M. Hobold, Marie Francine Lagadec, Rui Guo, Christophe Lethien, Maxime Hallot, Olivier Fontaine, Jean-Marie Tarascon, Betar M. Gallant und Alexis Grimaud. „Can an Inorganic Coating Serve as Stable SEI for Aqueous Superconcentrated Electrolytes?“ ACS Energy Letters 6, Nr. 7 (28.06.2021): 2575–83. http://dx.doi.org/10.1021/acsenergylett.1c01097.
Der volle Inhalt der QuelleYamada, Yuki, Keizo Furukawa, Keitaro Sodeyama, Keisuke Kikuchi, Makoto Yaegashi, Yoshitaka Tateyama und Atsuo Yamada. „Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries“. Journal of the American Chemical Society 136, Nr. 13 (23.03.2014): 5039–46. http://dx.doi.org/10.1021/ja412807w.
Der volle Inhalt der QuelleYamada, Yuki, Kenji Usui, Ching Hua Chiang, Keisuke Kikuchi, Keizo Furukawa und Atsuo Yamada. „General Observation of Lithium Intercalation into Graphite in Ethylene-Carbonate-Free Superconcentrated Electrolytes“. ACS Applied Materials & Interfaces 6, Nr. 14 (26.03.2014): 10892–99. http://dx.doi.org/10.1021/am5001163.
Der volle Inhalt der QuelleHan, Sungho. „Anionic effects on the structure and dynamics of water in superconcentrated aqueous electrolytes“. RSC Advances 9, Nr. 2 (2019): 609–19. http://dx.doi.org/10.1039/c8ra09589b.
Der volle Inhalt der QuelleYamada, Yuki, und Atsuo Yamada. „Superconcentrated Electrolytes to Create New Interfacial Chemistry in Non-aqueous and Aqueous Rechargeable Batteries“. Chemistry Letters 46, Nr. 8 (05.08.2017): 1056–64. http://dx.doi.org/10.1246/cl.170284.
Der volle Inhalt der QuelleYamada, Yuki, Ching Hua Chiang, Keitaro Sodeyama, Jianhui Wang, Yoshitaka Tateyama und Atsuo Yamada. „Cover Picture: Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes (ChemElectroChem 11/2015)“. ChemElectroChem 2, Nr. 11 (12.10.2015): 1625. http://dx.doi.org/10.1002/celc.201500427.
Der volle Inhalt der QuelleRakov, Dmitrii A., Fangfang Chen, Shammi A. Ferdousi, Hua Li, Thushan Pathirana, Alexandr N. Simonov, Patrick C. Howlett, Rob Atkin und Maria Forsyth. „Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes“. Nature Materials 19, Nr. 10 (04.05.2020): 1096–101. http://dx.doi.org/10.1038/s41563-020-0673-0.
Der volle Inhalt der QuelleChen, Fangfang, Patrick Howlett und Maria Forsyth. „Na-Ion Solvation and High Transference Number in Superconcentrated Ionic Liquid Electrolytes: A Theoretical Approach“. Journal of Physical Chemistry C 122, Nr. 1 (21.12.2017): 105–14. http://dx.doi.org/10.1021/acs.jpcc.7b09322.
Der volle Inhalt der QuelleTakada, Koji, Yuki Yamada, Eriko Watanabe, Jianhui Wang, Keitaro Sodeyama, Yoshitaka Tateyama, Kazuhisa Hirata, Takeo Kawase und Atsuo Yamada. „Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries“. ACS Applied Materials & Interfaces 9, Nr. 39 (20.09.2017): 33802–9. http://dx.doi.org/10.1021/acsami.7b08414.
Der volle Inhalt der Quelle