Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Superconcentrated electrolyte“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Superconcentrated electrolyte" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Superconcentrated electrolyte"
Klorman, Jake A., und Kah Chun Lau. „The Relevance of Lithium Salt Solvate Crystals in Superconcentrated Electrolytes in Lithium Batteries“. Energies 16, Nr. 9 (26.04.2023): 3700. http://dx.doi.org/10.3390/en16093700.
Der volle Inhalt der QuelleTian, Zengying, Wenjun Deng, Xusheng Wang, Chunyi Liu, Chang Li, Jitao Chen, Mianqi Xue, Rui Li und Feng Pan. „Superconcentrated aqueous electrolyte to enhance energy density for advanced supercapacitors“. Functional Materials Letters 10, Nr. 06 (Dezember 2017): 1750081. http://dx.doi.org/10.1142/s1793604717500813.
Der volle Inhalt der QuelleYang, Chongyin, Liumin Suo, Oleg Borodin, Fei Wang, Wei Sun, Tao Gao, Xiulin Fan et al. „Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility“. Proceedings of the National Academy of Sciences 114, Nr. 24 (31.05.2017): 6197–202. http://dx.doi.org/10.1073/pnas.1703937114.
Der volle Inhalt der QuelleDubouis, Nicolas, Pierre Lemaire, Boris Mirvaux, Elodie Salager, Michael Deschamps und Alexis Grimaud. „The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “Water-in-Salt” electrolytes“. Energy & Environmental Science 11, Nr. 12 (2018): 3491–99. http://dx.doi.org/10.1039/c8ee02456a.
Der volle Inhalt der QuellePal, Urbi, Fangfang Chen, Derick Gyabang, Thushan Pathirana, Binayak Roy, Robert Kerr, Douglas R. MacFarlane, Michel Armand, Patrick C. Howlett und Maria Forsyth. „Enhanced ion transport in an ether aided super concentrated ionic liquid electrolyte for long-life practical lithium metal battery applications“. Journal of Materials Chemistry A 8, Nr. 36 (2020): 18826–39. http://dx.doi.org/10.1039/d0ta06344d.
Der volle Inhalt der QuelleRakov, Dmitrii. „(Best Student Presentation) Is Solid-Electrolyte Interphase Formation Affected by Electrode Conductivity?“ ECS Meeting Abstracts MA2023-01, Nr. 5 (28.08.2023): 873. http://dx.doi.org/10.1149/ma2023-015873mtgabs.
Der volle Inhalt der QuelleWang, Weijian, Wenjun Deng, Xusheng Wang, Yibo Li, Zhuqing Zhou, Zongxiang Hu, Mianqi Xue und Rui Li. „A hybrid superconcentrated electrolyte enables 2.5 V carbon-based supercapacitors“. Chemical Communications 56, Nr. 57 (2020): 7965–68. http://dx.doi.org/10.1039/d0cc02040k.
Der volle Inhalt der QuelleYamada, Yuki, Makoto Yaegashi, Takeshi Abe und Atsuo Yamada. „A superconcentrated ether electrolyte for fast-charging Li-ion batteries“. Chemical Communications 49, Nr. 95 (2013): 11194. http://dx.doi.org/10.1039/c3cc46665e.
Der volle Inhalt der QuelleLundgren, Henrik, Johan Scheers, Mårten Behm und Göran Lindbergh. „Characterization of the Mass-Transport Phenomena in a Superconcentrated LiTFSI:Acetonitrile Electrolyte“. Journal of The Electrochemical Society 162, Nr. 7 (2015): A1334—A1340. http://dx.doi.org/10.1149/2.0961507jes.
Der volle Inhalt der QuelleSun, Ju, Luke A. O’Dell, Michel Armand, Patrick C. Howlett und Maria Forsyth. „Anion-Derived Solid-Electrolyte Interphase Enables Long Life Na-Ion Batteries Using Superconcentrated Ionic Liquid Electrolytes“. ACS Energy Letters 6, Nr. 7 (14.06.2021): 2481–90. http://dx.doi.org/10.1021/acsenergylett.1c00816.
Der volle Inhalt der QuelleDissertationen zum Thema "Superconcentrated electrolyte"
Droguet, Léa. „Vers des électrolytes aqueux superconcentrés pour une application dans les batteries Li-ion“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS330.
Der volle Inhalt der QuelleThe development of superconcentrated aqueous electrolytes, namely Water-in-salt electrolytes (WiSE), from 2015 onwards has renewed the interest for aqueous-based Li-ion battery (LIB). Indeed, they were proposed to overcome issues related to safety and sustainability of common carbonate-based organic solvent while solving the poor performances of diluted aqueous electrolyte due to the narrow electrochemical stability window (ESW) of water (1.23 V). Such achievements are largely attributed to modification of the electrolyte structure upon increase in concentration that changes the physico-chemical properties and the interfacial reactivity. An inorganic LiF-based solid electrolyte interphase (SEI) was reported to be formed, opening the path for the use of low potential negative electrodes, further increasing the energy density of these batteries. This work aims to provide answers regarding the viability of WiSE in LIB. By conducting a systematic study of the impact of superconcentration on battery performances as function of the operating conditions, we demonstrate that the SEI is not able to prevent water reduction following the hydrogen evolution reaction (HER), neither during cycling nor during resting period, i.e. self-discharge. Indeed, the rates for water consumption calculated during cycling and resting period are found within the same order of magnitude, highlighting the SEI limitation to prevent water reduction although the surface is passivated. Determining the activation energies for HER during cycling and self-discharge, we suggest that self-discharge is more likely driven by water reduction than Li+ deintercalation. Eventually, LiF solubility measurements, gas chromatography tests and environmental scanning electron microscopy suggest that SEI instability is related to structural defects that cannot be self-passivated in WiSE. A presoaking step in organic electrolyte of an artificial Li/LiF layer reduces water consumption and thus confirms the need for the SEI to self-repair