Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Sup-Norm“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Sup-Norm" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Sup-Norm"
Grundmeier, Dusty, Lars Simon und Berit Stensønes. „Sup-norm estimates for $\overline{\partial}$“. Pure and Applied Mathematics Quarterly 18, Nr. 2 (2022): 531–71. http://dx.doi.org/10.4310/pamq.2022.v18.n2.a8.
Der volle Inhalt der QuelleTemple, Blake. „Sup-norm estimates in Glimm's method“. Journal of Differential Equations 83, Nr. 1 (Januar 1990): 79–84. http://dx.doi.org/10.1016/0022-0396(90)90069-2.
Der volle Inhalt der QuelleYoung, Robin. „Sup-norm stability for Glimm's scheme“. Communications on Pure and Applied Mathematics 46, Nr. 6 (Juli 1993): 903–48. http://dx.doi.org/10.1002/cpa.3160460605.
Der volle Inhalt der QuelleKarafyllis, Iasson, und Miroslav Krstic. „ISS estimates in the spatial sup-norm for nonlinear 1-D parabolic PDEs“. ESAIM: Control, Optimisation and Calculus of Variations 27 (2021): 57. http://dx.doi.org/10.1051/cocv/2021053.
Der volle Inhalt der QuelleBrown, Mark. „Weighted sup-norm inequalities and their applications“. Communications in Statistics - Theory and Methods 19, Nr. 11 (Januar 1990): 4061–81. http://dx.doi.org/10.1080/03610929008830429.
Der volle Inhalt der QuelleBertin, Karine, und Vincent Rivoirard. „Maxiset in sup-norm for kernel estimators“. TEST 18, Nr. 3 (15.04.2008): 475–96. http://dx.doi.org/10.1007/s11749-008-0109-7.
Der volle Inhalt der QuelleJorgenson, J., und J. Kramer. „Bounding the sup-norm of automorphic forms“. Geometrical and Functional Analysis GAFA 14, Nr. 6 (Dezember 2004): 1267–77. http://dx.doi.org/10.1007/s00039-004-0491-6.
Der volle Inhalt der QuelleBlomer, Valentin, und Péter Maga. „The Sup-Norm Problem for PGL(4)“. International Mathematics Research Notices 2015, Nr. 14 (19.06.2014): 5311–32. http://dx.doi.org/10.1093/imrn/rnu100.
Der volle Inhalt der QuelleHinz, Michael. „Sup-norm-closable bilinear forms and Lagrangians“. Annali di Matematica Pura ed Applicata (1923 -) 195, Nr. 4 (06.06.2015): 1021–54. http://dx.doi.org/10.1007/s10231-015-0503-1.
Der volle Inhalt der QuelleNezir, Veysel, und Nizami Mustafa. „c0 can be renormed to have the fixed point property for affine nonexpansive mappings“. Filomat 32, Nr. 16 (2018): 5645–63. http://dx.doi.org/10.2298/fil1816645n.
Der volle Inhalt der QuelleDissertationen zum Thema "Sup-Norm"
Stey, George C. „Asymptotic expansion for the L1 Norm of N-Fold convolutions“. The Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=osu1174537038.
Der volle Inhalt der QuelleJana, Subhajit. „Sup-norm problem of certain eigenfunctions on arithmetic hyperbolic manifolds“. Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/52739.
Der volle Inhalt der QuelleScience, Faculty of
Mathematics, Department of
Graduate
Menes, Thibaut. „Grandes valeurs des formes de Maass sur des quotients compacts de grassmanniennes hyperboliques dans l’aspect volume“. Electronic Thesis or Diss., Paris 13, 2024. http://www.theses.fr/2024PA131059.
Der volle Inhalt der QuelleLet n > m = 1 be integers such that n + m >= 4 is even. We prove the existence, in the volume aspect, of exceptional Maass forms on compact quotients of the hyperbolic Grassmannian of signature (n,m). The method builds upon the work of Rudnick and Sarnak, extended by Donnelly and then generalized by Brumley and Marshall to higher rank. It combines a counting argument with a period relation, showingthat a certain period distinguishes theta lifts from an auxiliary group. The congruence structure is defined with respect to this period and the auxiliary group is either U(m,m) or Sp_2m(R), making (U(n,m),U(m,m)) or (O(n,m),Sp_2m(R)) a type 1 dual reductive pair. The lower bound is naturally expressed, up to a logarithmic factor, as the ratio of the volumes, with the principal congruence structure on the auxiliary group
Maknun, Imam Jauhari. „Évaluation numérique des éléments finis DKMQ pour les plaques et les coques“. Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS040/document.
Der volle Inhalt der QuelleIn the linear case, the Mindlin-Reissner model for thick plates and the Naghdi model for thick shells are commonly used. The finite element discretization of these models leads to numerical locking phenomenon when the thickness approaches zero : shear locking for plates and both shear and membrane locking for shells. There are some finite elements that could reduce or even eliminate this phenomenon. DKMQ element for plates or DKMQ24 element for shells, are low-order elements, based on a mixed formulation, introduced a few years ago to prevent the numerical locking phenomenon. In this thesis, we concentrated on numerical evaluation of the performance of these elements. Besides the classical benchmark tests, we also focused on the analysis of discrete inf-sup condition for DKMQ element. We studied the s-norm test proposed by Bathe for DKMQ24 element. Finally, we performed a posteriori error estimation for DKMQ and DKMQ24 elements, using the error estimator Z2 (proposed by Zienkiewicz and Zhu), associated with the averaging, projection or SPR recovery methods. The results obtained have enabled us to quantify the performance of these two finite elements for locking problems, and to identify their limits. Two important applications of these elements DKMQ and DKMQ24 were then presented ; the first one concerns thin-walled beams with open cross-section and the second one composite plates
Hirsch, Gérard. „Équations de relation floue et mesures d'incertain en reconnaissance de formes“. Nancy 1, 1987. http://www.theses.fr/1987NAN10030.
Der volle Inhalt der QuelleBücher zum Thema "Sup-Norm"
Sogge, Christopher D. The sharp Weyl formula. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691160757.003.0003.
Der volle Inhalt der QuelleSogge, Christopher D. Improved spectral asymptotics and periodic geodesics. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691160757.003.0005.
Der volle Inhalt der QuelleAlger, Justin. Conserving the Oceans. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197540534.001.0001.
Der volle Inhalt der QuelleSogge, Christopher D. Hangzhou Lectures on Eigenfunctions of the Laplacian (AM-188). Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691160757.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Sup-Norm"
Lyche, Tom, und Karl Scherer. „On the Sup-norm Condition Number of the Multivariate Triangular Bernstein Basis“. In Multivariate Approximation and Splines, 141–51. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8871-4_12.
Der volle Inhalt der QuelleFriedman, Joshua S., Jay Jorgenson und Jürg Kramer. „Uniform Sup-Norm Bounds on Average for Cusp Forms of Higher Weights“. In Arbeitstagung Bonn 2013, 127–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43648-7_6.
Der volle Inhalt der QuelleGiné, Evarist, und Hailin Sang. „On the estimation of smooth densities by strict probability densities at optimal rates in sup-norm“. In Institute of Mathematical Statistics Collections, 128–49. Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2013. http://dx.doi.org/10.1214/12-imscoll910.
Der volle Inhalt der QuelleHaesemeyer, Christian, und Charles A. Weibel. „Existence of Norm Varieties“. In The Norm Residue Theorem in Motivic Cohomology, 144–57. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691191041.003.0010.
Der volle Inhalt der Quelle„Sup-norm estimates for the ∂-equation“. In Lectures on Counterexamples in Several Complex Variables, 165–67. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/chel/363/23.
Der volle Inhalt der Quelle„Sup-Norm Estimate Based on Characteristics“. In The Global Nonlinear Stability of Minkowski Space for Self-Gravitating Massive Fields, 99–104. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813230866_0009.
Der volle Inhalt der Quelle„High-Order Refined Sup-Norm Estimates“. In The Global Nonlinear Stability of Minkowski Space for Self-Gravitating Massive Fields, 139–45. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813230866_0013.
Der volle Inhalt der QuelleHaesemeyer, Christian, und Charles A. Weibel. „The Motivic Group H−1,−1BM“. In The Norm Residue Theorem in Motivic Cohomology, 95–102. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691191041.003.0007.
Der volle Inhalt der QuelleHaesemeyer, Christian, und Charles A. Weibel. „Hilbert 90 for KnM“. In The Norm Residue Theorem in Motivic Cohomology, 42–53. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691191041.003.0003.
Der volle Inhalt der QuelleGrattan, Patrick. „Hop drying in Continental Title of Chapter Europe“. In Oasts and Hop Kilns, 131–41. Liverpool University Press, 2021. http://dx.doi.org/10.3828/liverpool/9781789622515.003.0015.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Sup-Norm"
Han, Sujia, und Caiqin Song. „The Minimal Norm Hermitian Solutions of the Reduced Biquaternion Matrix Equation MO + OT N = Z“. In 2024 24th International Conference on Control, Automation and Systems (ICCAS), 1023–28. IEEE, 2024. https://doi.org/10.23919/iccas63016.2024.10773034.
Der volle Inhalt der QuelleLhachemi, Hugo, und Christophe Prieur. „Stabilization of a reaction-diffusion equation in H2-norm with application to saturated Neumann measurement“. In 2024 IEEE 63rd Conference on Decision and Control (CDC), 1187–92. IEEE, 2024. https://doi.org/10.1109/cdc56724.2024.10886069.
Der volle Inhalt der QuelleGajdusek, M., A. A. H. Damen und P. P. J. van den Bosch. „l∞-norm and clipped l2-norm based commutation for ironless over-actuated electromagnetic actuators“. In 2010 XIX International Conference on Electrical Machines (ICEM). IEEE, 2010. http://dx.doi.org/10.1109/icelmach.2010.5608136.
Der volle Inhalt der QuelleChang, B. c., und J. Pearson. „Iterative computation of minimal H∞ norm“. In 1985 24th IEEE Conference on Decision and Control. IEEE, 1985. http://dx.doi.org/10.1109/cdc.1985.268719.
Der volle Inhalt der QuelleMohimani, G. H., M. Babaie-Zadeh und C. Jutten. „Complex-valued sparse representation based on smoothed ℓ0 norm“. In ICASSP 2008 - 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2008. http://dx.doi.org/10.1109/icassp.2008.4518501.
Der volle Inhalt der QuelleTaner, Sueda, und Christoph Studer. „ℓp−ℓq-Norm Minimization for Joint Precoding and Peak-to-Average-Power Ratio Reduction“. In 2021 55th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2021. http://dx.doi.org/10.1109/ieeeconf53345.2021.9723175.
Der volle Inhalt der QuelleAbubakar, Aria, und Peter M. van den Berg. „A multiplicative weighted L2-norm total variation regularization for deblurring algorithms“. In Proceedings of ICASSP '02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.5745420.
Der volle Inhalt der QuelleShafi, S. Yusef, Zahra Aminzare, Murat Arcak und Eduardo D. Sontag. „Spatial uniformity in diffusively-coupled systems using weighted L2 norm contractions“. In 2013 American Control Conference (ACC). IEEE, 2013. http://dx.doi.org/10.1109/acc.2013.6580717.
Der volle Inhalt der QuelleCong Ma, Yu Liu, Lin Zhang und Xuqi Zhu. „Distributed compressive video sensing based on smoothed ℓ0 norm with partially known support“. In 2011 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2011. http://dx.doi.org/10.1109/icme.2011.6011921.
Der volle Inhalt der QuelleYang, Qianqian, Rui Min, Zongjie Cao und Yiming Pi. „Super-resolution SAR tomography focusing by lp — Norm regularization-the FOCUSS algorithm“. In 2012 IEEE Globecom Workshops (GC Wkshps). IEEE, 2012. http://dx.doi.org/10.1109/glocomw.2012.6477785.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Sup-Norm"
Christensen, Timothy M., und Xiaohong Chen. Optimal sup-norm rates, adaptivity and inference in nonparametric instrumental variables estimation. Institute for Fiscal Studies, Juni 2015. http://dx.doi.org/10.1920/wp.cem.2015.3215.
Der volle Inhalt der QuelleChen, Xiaohong, und Timothy M. Christensen. Optimal sup-norm rates and uniform inference on nonlinear functionals of nonparametric IV regression. The IFS, Februar 2017. http://dx.doi.org/10.1920/wp.cem.2017.0917.
Der volle Inhalt der QuelleParker, Thomas. A comparison of alternative approaches to sup-norm goodness of fit tests with estimated parameters. Institute for Fiscal Studies, November 2010. http://dx.doi.org/10.1920/wp.cem.2010.3410.
Der volle Inhalt der Quelle