Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Sulfur insertase“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Sulfur insertase" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Sulfur insertase"
Fellner, Matthias, Benoît Desguin, Robert P. Hausinger und Jian Hu. „Structural insights into the catalytic mechanism of a sacrificial sulfur insertase of the N-type ATP pyrophosphatase family, LarE“. Proceedings of the National Academy of Sciences 114, Nr. 34 (07.08.2017): 9074–79. http://dx.doi.org/10.1073/pnas.1704967114.
Der volle Inhalt der QuelleFellner, Matthias, Joel A. Rankin, Benoît Desguin, Jian Hu und Robert P. Hausinger. „Analysis of the Active Site Cysteine Residue of the Sacrificial Sulfur Insertase LarE from Lactobacillus plantarum“. Biochemistry 57, Nr. 38 (29.08.2018): 5513–23. http://dx.doi.org/10.1021/acs.biochem.8b00601.
Der volle Inhalt der QuelleLeimkühler, Silke, und Werner Klipp. „Role of XDHC in Molybdenum Cofactor Insertion into Xanthine Dehydrogenase of Rhodobacter capsulatus“. Journal of Bacteriology 181, Nr. 9 (01.05.1999): 2745–51. http://dx.doi.org/10.1128/jb.181.9.2745-2751.1999.
Der volle Inhalt der QuelleWunsch, Patrick, Margitta Herb, Hagen Wieland, Ulrike M. Schiek und Walter G. Zumft. „Requirements for CuA and Cu-S Center Assembly of Nitrous Oxide Reductase Deduced from Complete Periplasmic Enzyme Maturation in the Nondenitrifier Pseudomonas putida“. Journal of Bacteriology 185, Nr. 3 (01.02.2003): 887–96. http://dx.doi.org/10.1128/jb.185.3.887-896.2003.
Der volle Inhalt der QuelleRudenko, Tatyana S., Sergey V. Tarlachkov, Nikolay D. Shatskiy und Margarita Yu Grabovich. „Comparative Genomics of Beggiatoa leptomitoformis Strains D-401 and D-402T with Contrasting Physiology But Extremely High Level of Genomic Identity“. Microorganisms 8, Nr. 6 (19.06.2020): 928. http://dx.doi.org/10.3390/microorganisms8060928.
Der volle Inhalt der QuelleYe, Ke-Yin, Markus Bursch, Zheng-Wang Qu, Constantin G. Daniliuc, Stefan Grimme, Gerald Kehr und Gerhard Erker. „Reversible formylborane/SO2coupling at a frustrated Lewis pair framework“. Chemical Communications 53, Nr. 3 (2017): 633–35. http://dx.doi.org/10.1039/c6cc07071j.
Der volle Inhalt der QuellePaietta, J. V., R. A. Akins, A. M. Lambowitz und G. A. Marzluf. „Molecular cloning and characterization of the cys-3 regulatory gene of Neurospora crassa.“ Molecular and Cellular Biology 7, Nr. 7 (Juli 1987): 2506–11. http://dx.doi.org/10.1128/mcb.7.7.2506.
Der volle Inhalt der QuelleTimina, Olga, Oleg Timin und Anna Stepanova. „Some biochemical characteristics of the hairy roots of Pisum sativum L. mutants“. Ecological genetics 21, Nr. 3S (04.12.2023): 40. http://dx.doi.org/10.17816/ecogen568310.
Der volle Inhalt der QuellePinto, Rachel, Joseph S. Harrison, Tsungda Hsu, William R. Jacobs und Thomas S. Leyh. „Sulfite Reduction in Mycobacteria“. Journal of Bacteriology 189, Nr. 18 (20.07.2007): 6714–22. http://dx.doi.org/10.1128/jb.00487-07.
Der volle Inhalt der QuelleDouglas, Paul, Marco Kriek, Penny Bryant und Peter L. Roach. „Lipoyl Synthase Inserts Sulfur Atoms into an Octanoyl Substrate in a Stepwise Manner“. Angewandte Chemie 118, Nr. 31 (04.08.2006): 5321–23. http://dx.doi.org/10.1002/ange.200601910.
Der volle Inhalt der QuelleDissertationen zum Thema "Sulfur insertase"
Zecchin, Paolo. „Mobilisation et incorporation enzymatique du soufre lors de réactions non-redox impliquant un centre [4Fe-4S] : étude biochimique et structurale d’une cystéine désulfidase et d’une sulfurtransférase“. Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS667.pdf.
Der volle Inhalt der QuelleSulfur-containing compounds, such as cysteine and certain cofactors, play crucial roles in cellular processes. This thesis explores the sulfur metabolism in the anaerobic archaeum Methanococcus maripaludis, focusing on two [4Fe-4S]-dependent enzymes: L-cysteine desulfidase MmCyuA and ATP-dependent sulfur insertase MmLarE. The first part focuses on MmCyuA, which catalyzes the decomposition of L-cysteine into hydrogenosulfide and 2-aminoacrylate, subsequently converted into pyruvate and ammonia. The crystal structures of MmCyuA that we obtained, alone and in the presence of the serine inhibitor or the pyruvate product, are the first structures of a cysteine desulfidase. These structures, together with our biochemical results and spectroscopic analysis, reveal the capacity of MmCyuA to bind a [4Fe-4S] cluster, required for activity, using three or four cysteines. The structure of the enzyme in complex with serine mimics the initial step of the reaction and suggest a desulfuration mechanism for cysteine that involves the formation of a [4Fe-5S] intermediate. Comparative growth experiments between wild-type and CyuAdeficient M. maripaludis strains highlight the important role of MmCyuA for optimal growth and to enables growth using cysteine as the sole sulfur source. We propose that MmCyuA could transfer the cluster-bound sulfide to downstream acceptors, along the biosynthetic pathways of sulfurated compounds, such as [4Fe-4S]-dependent thiolation enzymes. The second part details the structure and mechanism of MmLarE. This enzyme catalyzes the sequential conversion of the two carboxylate groups of the precursor of the lactate racemase cofactor into thiocarboxylates. Two classes of LarE enzymes exist, using a sacrificial mechanism, in which a cysteine serves as the sulfur source, or a [4Fe-4S] cluster-dependent mechanism. We present the first crystal structure of a [4Fe-4S]-dependent LarE enzyme, in both its apo (without cluster) and holo (with cluster) forms. The crystal structure of holo-MmLarE reveals a [4Fe-4S] cluster coordinated by three cysteines only, with the fourth iron atom bound to an anionic ligand (chloride or phosphate group). These structures, along with our spectroscopic studies, support a mechanism in which the [4Fe-4S] cluster binds a hydrogenosulfide ligand, forming a [4Fe-5S]