Zeitschriftenartikel zum Thema „Sugp1“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Sugp1" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Liu, Zhaoqi, Jian Zhang, Yiwei Sun, Tomin E. Perea-Chamblee, James L. Manley und Raul Rabadan. „Pan-cancer analysis identifies mutations in SUGP1 that recapitulate mutant SF3B1 splicing dysregulation“. Proceedings of the National Academy of Sciences 117, Nr. 19 (24.04.2020): 10305–12. http://dx.doi.org/10.1073/pnas.1922622117.
Der volle Inhalt der QuelleAlsafadi, Samar, Stephane Dayot, Malcy Tarin, Alexandre Houy, Dorine Bellanger, Michele Cornella, Michel Wassef et al. „Genetic alterations of SUGP1 mimic mutant-SF3B1 splice pattern in lung adenocarcinoma and other cancers“. Oncogene 40, Nr. 1 (14.10.2020): 85–96. http://dx.doi.org/10.1038/s41388-020-01507-5.
Der volle Inhalt der QuelleBenbarche, Salima, Jose Maria Bello Pineda, Laura Baquero Galvis, Bo Liu, Jeetayu Biswas, Eric Wang, K. Ashley Lyttle et al. „Synthetic Introns Identify the Novel RNA Splicing Factor GPATCH8 As Required for Mis-Splicing Induced By SF3B1 Mutations“. Blood 142, Supplement 1 (28.11.2023): 3. http://dx.doi.org/10.1182/blood-2023-179848.
Der volle Inhalt der QuelleZhang, Jian, Abdullah M. Ali, Yen K. Lieu, Zhaoqi Liu, Jianchao Gao, Raul Rabadan, Azra Raza, Siddhartha Mukherjee und James L. Manley. „Disease-Causing Mutations in SF3B1 Alter Splicing by Disrupting Interaction with SUGP1“. Molecular Cell 76, Nr. 1 (Oktober 2019): 82–95. http://dx.doi.org/10.1016/j.molcel.2019.07.017.
Der volle Inhalt der QuelleFeng, Qing, Keegan Krick, Jennifer Chu und Christopher B. Burge. „Splicing quality control mediated by DHX15 and its G-patch activator SUGP1“. Cell Reports 42, Nr. 10 (Oktober 2023): 113223. http://dx.doi.org/10.1016/j.celrep.2023.113223.
Der volle Inhalt der QuelleDeng, Guo-Xiong, Rui-Xing Yin, Yao-Zong Guan, Chun-Xiao Liu, Peng-Fei Zheng, Bi-Liu Wei, Jin-Zhen Wu und Liu Miao. „Association of the NCAN-TM6SF2-CILP2-PBX4-SUGP1-MAU2 SNPs and gene-gene and gene-environment interactions with serum lipid levels“. Aging 12, Nr. 12 (22.06.2020): 11893–913. http://dx.doi.org/10.18632/aging.103361.
Der volle Inhalt der QuelleLiu, Xinglin, Zengchun Wang, Yanping Jiang, Libo Huang, Xuejun Yuan, Yang Li, Ning Jiao, Weiren Yang und Shuzhen Jiang. „Quantitative Proteomic Analysis of Zearalenone Exposure on Uterine Development in Weaned Gilts“. Toxins 14, Nr. 10 (09.10.2022): 692. http://dx.doi.org/10.3390/toxins14100692.
Der volle Inhalt der QuelleArslanow, A., C. S. Stokes, F. Grünhage, F. Lammert und M. Krawczyk. „P1048 : Effects of prosteatogenic TM6SF2 and NCAN/SUGP1 variants on hepatic steatosis and non-invasive markers of liver injury in patients with chronic liver diseases“. Journal of Hepatology 62 (April 2015): S741—S742. http://dx.doi.org/10.1016/s0168-8278(15)31246-0.
Der volle Inhalt der QuelleGhodsian, Nooshin, Erik Abner, Émilie Gobeil, Nele Taba, Alexis St Amand, Nicolas Perrot, Christian Couture et al. „Electronic Health Record-Based Genome-Wide Meta-Analysis Identifies New Susceptibility Loci for Non-Alcoholic Fatty Liver Disease“. Journal of the Endocrine Society 5, Supplement_1 (01.05.2021): A501. http://dx.doi.org/10.1210/jendso/bvab048.1024.
Der volle Inhalt der QuellePatterton, D., und J. Hapgood. „suGF1 binds in the major groove of its oligo(dG).oligo(dC) recognition sequence and is excluded by a positioned nucleosome core“. Molecular and Cellular Biology 14, Nr. 2 (Februar 1994): 1410–18. http://dx.doi.org/10.1128/mcb.14.2.1410-1418.1994.
Der volle Inhalt der QuellePatterton, D., und J. Hapgood. „suGF1 binds in the major groove of its oligo(dG).oligo(dC) recognition sequence and is excluded by a positioned nucleosome core.“ Molecular and Cellular Biology 14, Nr. 2 (Februar 1994): 1410–18. http://dx.doi.org/10.1128/mcb.14.2.1410.
Der volle Inhalt der QuelleXu, Q., R. A. Singer und G. C. Johnston. „Sug1 modulates yeast transcription activation by Cdc68.“ Molecular and Cellular Biology 15, Nr. 11 (November 1995): 6025–35. http://dx.doi.org/10.1128/mcb.15.11.6025.
Der volle Inhalt der QuelleMukhopadhyay, Debaditya, Ferhan Ayaydin, Nagamalleswari Kolli, Shyh-Han Tan, Tadashi Anan, Ai Kametaka, Yoshiaki Azuma, Keith D. Wilkinson und Mary Dasso. „SUSP1 antagonizes formation of highly SUMO2/3-conjugated species“. Journal of Cell Biology 174, Nr. 7 (21.09.2006): 939–49. http://dx.doi.org/10.1083/jcb.200510103.
Der volle Inhalt der QuelleHapgood, J., und D. Patterton. „Purification of an oligo(dG).oligo(dC)-binding sea urchin nuclear protein, suGF1: a family of G-string factors involved in gene regulation during development“. Molecular and Cellular Biology 14, Nr. 2 (Februar 1994): 1402–9. http://dx.doi.org/10.1128/mcb.14.2.1402-1409.1994.
Der volle Inhalt der QuelleHapgood, J., und D. Patterton. „Purification of an oligo(dG).oligo(dC)-binding sea urchin nuclear protein, suGF1: a family of G-string factors involved in gene regulation during development.“ Molecular and Cellular Biology 14, Nr. 2 (Februar 1994): 1402–9. http://dx.doi.org/10.1128/mcb.14.2.1402.
Der volle Inhalt der QuelleKumar, Yatender, Vegesna Radha und Ghanshyam Swarup. „Interaction with Sug1 enables Ipaf ubiquitination leading to caspase 8 activation and cell death“. Biochemical Journal 427, Nr. 1 (15.03.2010): 91–104. http://dx.doi.org/10.1042/bj20091349.
Der volle Inhalt der QuelleKoues, Olivia I., R. Kyle Dudley, Agnieszka D. Truax, Dawson Gerhardt, Kavita P. Bhat, Sam McNeal und Susanna F. Greer. „Regulation of Acetylation at the Major Histocompatibility Complex Class II Proximal Promoter by the 19S Proteasomal ATPase Sug1“. Molecular and Cellular Biology 28, Nr. 19 (28.07.2008): 5837–50. http://dx.doi.org/10.1128/mcb.00535-08.
Der volle Inhalt der QuelleDagkesamanskaya, A. R., und M. D. Ter-Avanesyan. „Interaction of the yeast omnipotent suppressors SUP1(SUP45) and SUP2(SUP35) with non-mendelian factors.“ Genetics 128, Nr. 3 (01.07.1991): 513–20. http://dx.doi.org/10.1093/genetics/128.3.513.
Der volle Inhalt der QuelleKostyunina, O., A. Filipchenko, M. Fornara, A. Sermyagin und N. Zinovieva. „328 Polymorphism in TMEM95, SUGT1“. Journal of Animal Science 96, suppl_3 (Dezember 2018): 125. http://dx.doi.org/10.1093/jas/sky404.275.
Der volle Inhalt der QuelleBarbosa, F. A., D. S. Graça, P. H. S. Guimarães und F. V. Silva Júnior. „Análise econômica da suplementação protéico-energética de novilhos durante o período de transição entre água-seca“. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 60, Nr. 4 (August 2008): 911–16. http://dx.doi.org/10.1590/s0102-09352008000400021.
Der volle Inhalt der QuelleCheng, Guojun, Ramakrishnan Karunakaran, Alison K. East und Philip S. Poole. „Multiplicity of Sulfate and Molybdate Transporters and Their Role in Nitrogen Fixation in Rhizobium leguminosarum bv. viciae Rlv3841“. Molecular Plant-Microbe Interactions® 29, Nr. 2 (Februar 2016): 143–52. http://dx.doi.org/10.1094/mpmi-09-15-0215-r.
Der volle Inhalt der QuelleBarbosa, F. A., D. S. Graça, W. E. Maffei, F. V. Silva Júnior und G. M. Souza. „Desempenho e consumo de matéria seca de bovinos sob suplementação protéico-energética, durante a época de transição água-seca“. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 59, Nr. 1 (Februar 2007): 160–67. http://dx.doi.org/10.1590/s0102-09352007000100027.
Der volle Inhalt der QuelleLv, Tingxia, Wei Zhang, Anjian Xu, Yanmeng Li, Donghu Zhou, Bei Zhang, Xiaojin Li et al. „Non-HFE mutations in haemochromatosis in China: combination of heterozygous mutations involving HJV signal peptide variants“. Journal of Medical Genetics 55, Nr. 10 (30.08.2018): 650–60. http://dx.doi.org/10.1136/jmedgenet-2018-105348.
Der volle Inhalt der QuelleCarvalho, Cristina Dos Santos, Antonio Ralf Da Cunha Carneiro und Wesley Da Silva Magalhães. „Construções parentéticas epistêmicas no português angolano e moçambicano (Epistemic parenthetical constructions in Angolan and Mozambican Portuguese: convergences and divergences)“. Estudos da Língua(gem) 18, Nr. 1 (30.04.2020): 105. http://dx.doi.org/10.22481/el.v18i1.6100.
Der volle Inhalt der QuelleVielitz, Arne. „Aufbruch in eine Welt jenseits von p < 0,05“. manuelletherapie 24, Nr. 01 (Februar 2020): 5. http://dx.doi.org/10.1055/a-1085-7676.
Der volle Inhalt der QuelleChen, Mei-xiang, Qing-hua Chen, Qiao-xin Li und Zhong-peng Yang. „On the Open Problem Related to Rank Equalities for the Sum of Finitely Many Idempotent Matrices and Its Applications“. Scientific World Journal 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/702413.
Der volle Inhalt der QuelleZHANG, Xian, Roger J. A. GRAND, Christopher J. McCABE, Jayne A. FRANKLYN, Phillip H. GALLIMORE und Andrew S. TURNELL. „Transcriptional regulation of the human glycoprotein hormone common α subunit gene by cAMP-response-element-binding protein (CREB)-binding protein (CBP)/p300 and p53“. Biochemical Journal 368, Nr. 1 (15.11.2002): 191–201. http://dx.doi.org/10.1042/bj20020634.
Der volle Inhalt der QuelleKazankov, Vyacheslav, und Vladimir Gubin. „Psychology of ustoychivost': numerical scale for assessing human’s ustoychivost' according to the golden ratio rule“. E3S Web of Conferences 210 (2020): 20018. http://dx.doi.org/10.1051/e3sconf/202021020018.
Der volle Inhalt der QuelleTax, Frans E., James H. Thomas, Edwin L. Ferguson und H. Robert Horvitzt. „Identification and Characterization of Genes That Interact With lin-12 in Caenorhabditis elegans“. Genetics 147, Nr. 4 (01.12.1997): 1675–95. http://dx.doi.org/10.1093/genetics/147.4.1675.
Der volle Inhalt der QuelleWang, W., P. M. Chevray und D. Nathans. „Mammalian Sug1 and c-Fos in the nuclear 26S proteasome.“ Proceedings of the National Academy of Sciences 93, Nr. 16 (06.08.1996): 8236–40. http://dx.doi.org/10.1073/pnas.93.16.8236.
Der volle Inhalt der QuelleIbrahim, S. P. Syed, K. R. Chandran und C. J. Kabila Kanthasamy. „CHISC-AC: Compact Highest Subset Confidence-Based Associative Classification^|^sup1;“. Data Science Journal 13 (2014): 127–37. http://dx.doi.org/10.2481/dsj.14-035.
Der volle Inhalt der QuelleAllouch, Awatef, Cristina Di Primio, Audrey Paoletti, Gabrielle Lê-Bury, Frédéric Subra, Valentina Quercioli, Roberta Nardacci et al. „SUGT1 controls susceptibility to HIV-1 infection by stabilizing microtubule plus-ends“. Cell Death & Differentiation 27, Nr. 12 (08.06.2020): 3243–57. http://dx.doi.org/10.1038/s41418-020-0573-5.
Der volle Inhalt der QuelleCheng, L., N. Roemer, K. A. Smyth, J. Belote, J. R. Nambu und L. M. Schwartz. „Cloning and characterization of Pros45, the Drosophila SUG1 proteasome subunit homolog“. Molecular and General Genetics MGG 259, Nr. 1 (Juli 1998): 13–20. http://dx.doi.org/10.1007/s004380050783.
Der volle Inhalt der QuelleIvins, K. J., R. R. Luedtke, R. P. Artymyshyn und P. B. Molinoff. „Regulation of dopamine D2 receptors in a novel cell line (SUP1).“ Molecular Pharmacology 39, Nr. 4 (April 1991): 531–39. https://doi.org/10.1016/s0026-895x(25)11002-x.
Der volle Inhalt der QuelleCarvalho, Cristina dos Santos, Antonio Ralf da Cunha A Carneiro und Wesley da Silva Magalhães. „Um estudo sociofuncional dos parentéticos epistêmicos quase-asseverativos em variedades do português (A sociofunctional study of quasi-assertive epistemic parentheticals in Portuguese varieties)“. Estudos da Língua(gem) 19, Nr. 4 (30.12.2021): 109–32. http://dx.doi.org/10.22481/el.v19i4.8651.
Der volle Inhalt der QuelleSU, Kaihong, Xiaoyong YANG, Mark D. ROOS, Andrew J. PATERSON und Jeffrey E. KUDLOW. „Human Sug1/p45 is involved in the proteasome-dependent degradation of Sp1“. Biochemical Journal 348, Nr. 2 (01.06.2000): 281. http://dx.doi.org/10.1042/0264-6021:3480281.
Der volle Inhalt der QuelleSU, Kaihong, Xiaoyong YANG, Mark D. ROOS, Andrew J. PATERSON und Jeffrey E. KUDLOW. „Human Sug1/p45 is involved in the proteasome-dependent degradation of Sp1“. Biochemical Journal 348, Nr. 2 (23.05.2000): 281–89. http://dx.doi.org/10.1042/bj3480281.
Der volle Inhalt der QuellePazynina, Galina V., Svetlana V. Tsygankova, Marina A. Sablina, Nadezhda V. Shilova, Alexander S. Paramonov, Alexander O. Chizhov und Nicolai V. Bovin. „Synthesis of Sug1-4GalNAcα disaccharides and their interaction with human blood antibodies“. Mendeleev Communications 33, Nr. 1 (Januar 2023): 107–8. http://dx.doi.org/10.1016/j.mencom.2023.01.033.
Der volle Inhalt der QuelleKim, Keun Il, Sung Hee Baek, Young-Joo Jeon, Shigeki Nishimori, Toshiaki Suzuki, Sanae Uchida, Naoki Shimbara, Hisato Saitoh, Keiji Tanaka und Chin Ha Chung. „A New SUMO-1-specific Protease, SUSP1, That Is Highly Expressed in Reproductive Organs“. Journal of Biological Chemistry 275, Nr. 19 (05.05.2000): 14102–6. http://dx.doi.org/10.1074/jbc.275.19.14102.
Der volle Inhalt der Quellevan Witteloostuijn, Arjen. „New-day statistical thinking: A bold proposal for a radical change in practices“. Journal of International Business Studies 51, Nr. 2 (02.12.2019): 274–78. http://dx.doi.org/10.1057/s41267-019-00288-8.
Der volle Inhalt der QuelleKushwaha, Nidhi, und O. P. Vyas. „Leveraging Bibliographic RDF Data for Keyword Prediction with Association Rule Mining (ARM)^|^sup1;“. Data Science Journal 13 (2014): 119–26. http://dx.doi.org/10.2481/dsj.14-033.
Der volle Inhalt der QuelleCIOFFI, Anna Valentina, Diana FERRARA, Maria Vittoria CUBELLIS, Francesco ANIELLO, Marcella CORRADO, Francesca LIGUORI, Alessandro AMOROSO, Laura FUCCI und Margherita BRANNO. „An open reading frame in intron seven of the sea urchin DNA-methyltransferase gene codes for a functional AP1 endonuclease“. Biochemical Journal 365, Nr. 3 (01.08.2002): 833–40. http://dx.doi.org/10.1042/bj20011857.
Der volle Inhalt der QuelleTassan, J. P., K. Le Guellec, M. Kress, M. Faure, J. Camonis, M. Jacquet und M. Philippe. „In Xenopus laevis, the product of a developmentally regulated mRNA is structurally and functionally homologous to a Saccharomyces cerevisiae protein involved in translation fidelity“. Molecular and Cellular Biology 13, Nr. 5 (Mai 1993): 2815–21. http://dx.doi.org/10.1128/mcb.13.5.2815-2821.1993.
Der volle Inhalt der QuelleTassan, J. P., K. Le Guellec, M. Kress, M. Faure, J. Camonis, M. Jacquet und M. Philippe. „In Xenopus laevis, the product of a developmentally regulated mRNA is structurally and functionally homologous to a Saccharomyces cerevisiae protein involved in translation fidelity.“ Molecular and Cellular Biology 13, Nr. 5 (Mai 1993): 2815–21. http://dx.doi.org/10.1128/mcb.13.5.2815.
Der volle Inhalt der QuelleRubin, David M., Olivier Coux, Inge Wefes, Christoph Hengartner, Richard A. Young, Alfred L. Goldberg und Daniel Daniel Finley. „Identification of the gal4 suppressor Sug1 as a subunit of the yeast 26S proteasome“. Nature 379, Nr. 6566 (Februar 1996): 655–57. http://dx.doi.org/10.1038/379655a0.
Der volle Inhalt der QuelleGrand, Roger JA, Andrew S. Turnell, Grant GF Mason, Wenlan Wang, Anne E. Milner, Joe S. Mymryk, Susan M. Rookes, A. Jennifer Rivett und Phillip H. Gallimore. „Adenovirus early region 1A protein binds to mammalian SUG1-a regulatory component of the proteasome“. Oncogene 18, Nr. 2 (Januar 1999): 449–58. http://dx.doi.org/10.1038/sj.onc.1202304.
Der volle Inhalt der QuelleMakino, Yasutaka, Kazuya Yamano, Masato Kanemaki, Kiyoshi Morikawa, Toshihiko Kishimoto, Naoki Shimbara, Keiji Tanaka und Taka-aki Tamura. „SUG1, a Component of the 26 S Proteasome, Is an ATPase Stimulated by Specific RNAs“. Journal of Biological Chemistry 272, Nr. 37 (12.09.1997): 23201–5. http://dx.doi.org/10.1074/jbc.272.37.23201.
Der volle Inhalt der QuelleBhat, Kavita P., Jonathan D. Turner, Sarah E. Myers, Austin D. Cape, Jenny P. Y. Ting und Susanna F. Greer. „The 19S proteasome ATPase Sug1 plays a critical role in regulating MHC class II transcription“. Molecular Immunology 45, Nr. 8 (April 2008): 2214–24. http://dx.doi.org/10.1016/j.molimm.2007.12.001.
Der volle Inhalt der QuelleInoue, Takeshi, Takahide Kon, Rieko Ajima, Reiko Ohkura, Masachika Tani, Jun Yokota und Kazuo Sutoh. „MYO18B interacts with the proteasomal subunit Sug1 and is degraded by the ubiquitin–proteasome pathway“. Biochemical and Biophysical Research Communications 342, Nr. 3 (April 2006): 829–34. http://dx.doi.org/10.1016/j.bbrc.2006.02.025.
Der volle Inhalt der QuelleBarhite, Steven, Christelle Thibault und Michael F. Miles. „Phosducin-like protein (PhLP), a regulator of Gβγ function, interacts with the proteasomal protein SUG1“. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1402, Nr. 1 (März 1998): 95–101. http://dx.doi.org/10.1016/s0167-4889(97)00141-9.
Der volle Inhalt der Quelle