Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Sucrose Non-Fermentable“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Sucrose Non-Fermentable" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Sucrose Non-Fermentable"
Hargono, Hargono, Bakti Jos, Abdullah Abdullah und Teguh Riyanto. „Inhibition Effect of Ca2+ Ions on Sucrose Hydrolysis Using Invertase“. Bulletin of Chemical Reaction Engineering & Catalysis 14, Nr. 3 (01.12.2019): 646. http://dx.doi.org/10.9767/bcrec.14.3.4437.646-653.
Der volle Inhalt der QuelleBajaj, Anubha. „Exiguous and Scarce-SMARCB1 Deficient Medullary Renal Cell Carcinoma“. Cell & Cellular Life Sciences Journal 8, Nr. 2 (2023): 1–4. http://dx.doi.org/10.23880/cclsj-16000188.
Der volle Inhalt der QuelleChoi, Sung Kyung, Myoung Jun Kim und Jueng Soo You. „SMARCB1 Acts as a Quiescent Gatekeeper for Cell Cycle and Immune Response in Human Cells“. International Journal of Molecular Sciences 21, Nr. 11 (01.06.2020): 3969. http://dx.doi.org/10.3390/ijms21113969.
Der volle Inhalt der QuelleRoberts, Michael, und J. Timothy Wright. „Food sugar substitutes: a brief review for dental clinicians“. Journal of Clinical Pediatric Dentistry 27, Nr. 1 (01.09.2003): 1–4. http://dx.doi.org/10.17796/jcpd.27.1.bl98u70371655hp8.
Der volle Inhalt der QuelleDobrescu, Andreea Cristina, Henrique César Teixeira Veras, Cristiano Varrone und Jan Dines Knudsen. „Novel Propagation Strategy of Saccharomyces cerevisiae for Enhanced Xylose Metabolism during Fermentation on Softwood Hydrolysate“. Fermentation 7, Nr. 4 (29.11.2021): 288. http://dx.doi.org/10.3390/fermentation7040288.
Der volle Inhalt der QuelleKakar, Smita, Xianyang Fang, Lucyna Lubkowska, Yan Ning Zhou, Gary X. Shaw, Yun-Xing Wang, Ding Jun Jin, Mikhail Kashlev und Xinhua Ji. „Allosteric Activation of Bacterial Swi2/Snf2 (Switch/Sucrose Non-fermentable) Protein RapA by RNA Polymerase“. Journal of Biological Chemistry 290, Nr. 39 (13.08.2015): 23656–69. http://dx.doi.org/10.1074/jbc.m114.618801.
Der volle Inhalt der QuelleRoberts, Michael W., und J. Timothy Wright. „Nonnutritive, Low Caloric Substitutes for Food Sugars: Clinical Implications for Addressing the Incidence of Dental Caries and Overweight/Obesity“. International Journal of Dentistry 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/625701.
Der volle Inhalt der QuelleMoelich, Nadine, Nicoline Potgieter, Francien S. Botha, James Wesley-Smith und Candice Van Wyk. „The search for a healthy sugar substitute in aid to lower the incidence of Early Childhood Caries: a comparison of sucrose, xylitol, erythritol and stevia“. South African Dental Journal 77, Nr. 08 (23.11.2022): 465–71. http://dx.doi.org/10.17159/2519-0105/2022/v77no8a2.
Der volle Inhalt der QuelleNguyen, Thinh T., Joanne G. A. Savory, Travis Brooke-Bisschop, Randy Ringuette, Tanya Foley, Bradley L. Hess, Kirk J. Mulatz, Laura Trinkle-Mulcahy und David Lohnes. „Cdx2 Regulates Gene Expression through Recruitment of Brg1-associated Switch-Sucrose Non-fermentable (SWI-SNF) Chromatin Remodeling Activity“. Journal of Biological Chemistry 292, Nr. 8 (12.01.2017): 3389–99. http://dx.doi.org/10.1074/jbc.m116.752774.
Der volle Inhalt der QuelleDel Savio, Elisa, und Roberta Maestro. „Beyond SMARCB1 Loss: Recent Insights into the Pathobiology of Epithelioid Sarcoma“. Cells 11, Nr. 17 (24.08.2022): 2626. http://dx.doi.org/10.3390/cells11172626.
Der volle Inhalt der QuelleDissertationen zum Thema "Sucrose Non-Fermentable"
Bretones, Santamarina Jorge. „Integrated multiomic analysis, synthetic lethality inference and network pharmacology to identify SWI/SNF subunit-specific pathway alterations and targetable vulnerabilities“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL049.
Der volle Inhalt der QuelleNowadays the cancer community agrees on the need for patient-tailored diagnostics and therapies, which calls for the design of translational studies combining experimental and statistical approaches. Current challenges include the validation of preclinical experimental models and their multi-omics profiling, along with the design of dedicated bioinformatics and mathematical pipelines (i.e. dimension reduction, multi-omics integration, mechanism-based digital twins) for identifying patient-specific optimal drug combinations.To address these challenges, we designed bioinformatics and statistical approaches to analyze various large-scale data types and integrate them to identify targetable vulnerabilities in cancer cell lines. We developed our pipeline in the context of alterations of the SWItch Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SWI/SNF mutations occur in ~20% of all cancers, but such malignancies still lack efficient therapies. We leveraged a panel of HAP1 isogenic cell lines mutated for SWI/SNF subunits or other epigenetic enzymes for which transcriptomics, proteomics and drug screening data were available.We worked on four methodological axes, the first one being the design of an optimized pathway enrichment pipeline to detect pathways differentially activated in the mutants against the wild-type. We developed a pruning algorithm to reduce gene and pathway redundancy in the Reactome database and improve the interpretability of the results. We evidenced the bad performance of first-generation enrichment methods and proposed to combine the topology-based method ROntoTools with pre-ranked GSEA to increase enrichment performance .Secondly, we analyzed drug screens, processed drug-gene interaction databases to obtain genes and pathways targeted by effective drugs and integrated them with proteomics enrichment results to infer targetable vulnerabilities selectively harming mutant cell lines. The validation of potential targets was achieved using a novel method detecting synthetic lethality from transcriptomics and CRISPR data of independent cancer cell lines in DepMap, run for each studied epigenetic enzyme. Finally, to further inform multi-agent therapy optimization, we designed a first digital representation of targetable pathways for SMARCA4-mutated tumors by building a directed protein-protein interaction network connecting targets inferred from multi-omics HAP1 and DepMap CRISPR analyses. We used the OmniPath database to retrieve direct protein interactions and added the connecting neighboring genes with the Neko algorithm.These methodological developments were applied to the HAP1 panel datasets. Using our optimized enrichment pipeline, we identified Metabolism of proteins as the most frequently dysregulated pathway category in SWI/SNF-KO lines. Next, the drug screening analysis revealed cytotoxic and epigenetic drugs selectively targeting SWI/SNF mutants, including CBP/EP300 or mitochondrial respiration inhibitors, also identified as synthetic lethal by our Depmap CRISPR analysis. Importantly, we validated these findings in two independent isogenic cancer-relevant experimental models. The Depmap CRISPR analysis was also used in a separate project to identify synthetic lethal interactions in glioblastoma, which proved relevant for patient-derived cell lines and are being validated in dedicated drug screens.To sum up, we developed computational methods to integrate multi-omics expression data with drug screening and CRISPR assays and identified new vulnerabilities in SWI/SNF mutants which were experimentally revalidated. This study was limited to the identification of effective single agents. As a future direction, we propose to design mathematical models representing targetable protein networks using differential equations and their use in numerical optimization and machine learning procedures as a key tool to investigate concomitant druggable targets and personalize drug combinations
Buchteile zum Thema "Sucrose Non-Fermentable"
Halfordl, N. G. „Molecular and biochemical analyses of plant Snfl-related protein kinases“. In Protein Phosphorylation in Plants, 129–40. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780198577775.003.0010.
Der volle Inhalt der Quelle