Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Subword complexes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Subword complexes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Subword complexes"
Gorsky, Mikhail A. „Subword complexes and edge subdivisions“. Proceedings of the Steklov Institute of Mathematics 286, Nr. 1 (Oktober 2014): 114–27. http://dx.doi.org/10.1134/s0081543814060078.
Der volle Inhalt der QuelleKnutson, Allen, und Ezra Miller. „Subword complexes in Coxeter groups“. Advances in Mathematics 184, Nr. 1 (Mai 2004): 161–76. http://dx.doi.org/10.1016/s0001-8708(03)00142-7.
Der volle Inhalt der QuelleCeballos, Cesar, Jean-Philippe Labbé und Christian Stump. „Subword complexes, cluster complexes, and generalized multi-associahedra“. Journal of Algebraic Combinatorics 39, Nr. 1 (13.03.2013): 17–51. http://dx.doi.org/10.1007/s10801-013-0437-x.
Der volle Inhalt der QuelleGorsky, M. A. „Subword Complexes and Nil-Hecke Moves“. Modeling and Analysis of Information Systems 20, Nr. 6 (13.03.2015): 121–28. http://dx.doi.org/10.18255/1818-1015-2013-6-121-128.
Der volle Inhalt der QuelleKnutson, Allen. „Schubert Patches Degenerate to Subword Complexes“. Transformation Groups 13, Nr. 3-4 (26.06.2008): 715–26. http://dx.doi.org/10.1007/s00031-008-9013-1.
Der volle Inhalt der QuelleBergeron, Nantel, und Cesar Ceballos. „A Hopf algebra of subword complexes“. Advances in Mathematics 305 (Januar 2017): 1163–201. http://dx.doi.org/10.1016/j.aim.2016.10.007.
Der volle Inhalt der QuelleGorsky, M. A. „Subword complexes and 2-truncated cubes“. Russian Mathematical Surveys 69, Nr. 3 (30.06.2014): 572–74. http://dx.doi.org/10.1070/rm2014v069n03abeh004903.
Der volle Inhalt der QuelleCeballos, Cesar, Arnau Padrol und Camilo Sarmiento. „ν-Tamari lattices via subword complexes“. Electronic Notes in Discrete Mathematics 61 (August 2017): 215–21. http://dx.doi.org/10.1016/j.endm.2017.06.041.
Der volle Inhalt der QuelleEscobar, Laura, und Karola Mészáros. „Subword complexes via triangulations of root polytopes“. Algebraic Combinatorics 1, Nr. 3 (2018): 395–414. http://dx.doi.org/10.5802/alco.17.
Der volle Inhalt der QuelleArmstrong, Drew, und Patricia Hersh. „Sorting orders, subword complexes, Bruhat order and total positivity“. Advances in Applied Mathematics 46, Nr. 1-4 (Januar 2011): 46–53. http://dx.doi.org/10.1016/j.aam.2010.09.006.
Der volle Inhalt der QuelleDissertationen zum Thema "Subword complexes"
Labbé, Jean-Philippe [Verfasser]. „Convex Geometry of Subword Complexes of Coxeter Groups / Jean-Philippe Labbé“. Berlin : Freie Universität Berlin, 2020. http://d-nb.info/1219070106/34.
Der volle Inhalt der QuelleCartier, Noémie. „Lattice properties of acyclic pipe dreams“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG065.
Der volle Inhalt der QuelleThis thesis comes within the scope of algebraic combinatorics. Some sorting algorithms can be described by diagrams called sorting networks, and the execution of the algorithms on input permutations translates to arrangements of curves on the networks. These arrangements modelize some classical combinatorial structures: for example, the Tamari lattice, whose cover relations are the rotations on binary trees, and which is a well-known quotient of the weak order on permutations. Subword complexes generalize sorting network and arrangements of curves to Coxeter groups. They have deep connections in algebra and geometry, in particular in Schubert calculus, in the study of grassmannian varieties, and in the theory of cluster algebras. This thesis focuses on lattice structures on some subword complexes, generalizing Tamari lattices. More precisely, it studies the relation defined by linear extensions of the facets of a subword complex. At first we focus on subword complexes defined on a triangular word of the symmetric group, which we represent with triangular pipe dreams. We prove that this relation defines a lattice quotient of a weak order interval; moreover, we can also use this relation to define a lattice morphism from this interval to the restriction of the flip graph of the subword complex to some of its facets. Secondly, we extent our study to subword complexes defined on alternating words of the symmetric group. We prove that this same relation also defines a lattice quotient; however, the image of the associated morphism is no longer the flip graph, but the skeleton of the brick polyhedron, an object defines on subword complexes to study realizations of the multiassociahedron. Finally, we discuss possible extensions of these results to finite Coxeter groups, as well as their applications to generalize some objects defined in type A such as nu-Tamari lattices
(6858680), Lida Ahmadi. „Asymptotic Analysis of the kth Subword Complexity“. Thesis, 2019.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Subword complexes"
Pilaud, Vincent, und Christian Stump. „EL-Labelings and Canonical Spanning Trees for Subword Complexes“. In Discrete Geometry and Optimization, 213–48. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00200-2_13.
Der volle Inhalt der Quelle