Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Subwavelength photonics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Subwavelength photonics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Subwavelength photonics"
Cheben, Pavel, Iñigo Molina Fernandez, David Smith, Weidong Zhou und Pierre Berini. „Subwavelength Photonics“. Optics and Photonics News 28, Nr. 5 (01.05.2017): 34. http://dx.doi.org/10.1364/opn.28.5.000034.
Der volle Inhalt der QuelleCheben, Pavel, Robert Halir, Jens H. Schmid, Harry A. Atwater und David R. Smith. „Subwavelength integrated photonics“. Nature 560, Nr. 7720 (August 2018): 565–72. http://dx.doi.org/10.1038/s41586-018-0421-7.
Der volle Inhalt der QuelleLuque-González, José Manuel, Alejandro Sánchez-Postigo, Abdelfettah Hadij-ElHouati, Alejandro Ortega-Moñux, J. Gonzalo Wangüemert-Pérez, Jens H. Schmid, Pavel Cheben, Íñigo Molina-Fernández und Robert Halir. „A review of silicon subwavelength gratings: building break-through devices with anisotropic metamaterials“. Nanophotonics 10, Nr. 11 (13.08.2021): 2765–97. http://dx.doi.org/10.1515/nanoph-2021-0110.
Der volle Inhalt der QuelleShcherbakov, M. R., D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker et al. „Nonlinear Properties of "Magnetic Light"“. Asia Pacific Physics Newsletter 04, Nr. 01 (23.10.2015): 57–58. http://dx.doi.org/10.1142/s2251158x15000211.
Der volle Inhalt der QuelleWu, Sailong, Xin Mu, Lirong Cheng, Simei Mao und H. Y. Fu. „State-of-the-Art and Perspectives on Silicon Waveguide Crossings: A Review“. Micromachines 11, Nr. 3 (20.03.2020): 326. http://dx.doi.org/10.3390/mi11030326.
Der volle Inhalt der QuelleYu, W., D. Wu, X. Duan und Y. Yi. „Subwavelength Grating Structure with High Aspect Ratio and Tapered Sidewall Profiles“. MRS Advances 1, Nr. 23 (28.12.2015): 1693–701. http://dx.doi.org/10.1557/adv.2015.32.
Der volle Inhalt der QuelleYoon, Hosang, Kitty Y. M. Yeung, Philip Kim und Donhee Ham. „Plasmonics with two-dimensional conductors“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, Nr. 2012 (28.03.2014): 20130104. http://dx.doi.org/10.1098/rsta.2013.0104.
Der volle Inhalt der QuelleLaw, M. „Nanoribbon Waveguides for Subwavelength Photonics Integration“. Science 305, Nr. 5688 (27.08.2004): 1269–73. http://dx.doi.org/10.1126/science.1100999.
Der volle Inhalt der QuelleSirbuly, Donald J., Matt Law, Haoquan Yan und Peidong Yang. „Semiconductor Nanowires for Subwavelength Photonics Integration“. Journal of Physical Chemistry B 109, Nr. 32 (August 2005): 15190–213. http://dx.doi.org/10.1021/jp051813i.
Der volle Inhalt der QuelleWang, Junjia, Ivan Glesk und Lawrence R. Chen. „Subwavelength grating devices in silicon photonics“. Science Bulletin 61, Nr. 11 (Juni 2016): 879–88. http://dx.doi.org/10.1007/s11434-016-1077-z.
Der volle Inhalt der QuelleDissertationen zum Thema "Subwavelength photonics"
Zhang, Jianhao. „Subwavelength engineering of silicon waveguides and cavities for nonlinear photonics“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS332/document.
Der volle Inhalt der QuelleSecond-order Pockels and the third-order Kerr effects are among the important effects exploited for light modulation and light generation in integrated photonic platforms. To take advantage of these nonlinearities in silicon photonics, especially due to the lack of second order effect in bulk Si, the use of subwavelength optical structures is explored. In this context, this thesis work has focused on two main aspects, including: 1) Exploration of a novel photonic cavity scheme to take benefit of the electro-optical Pockels effect in strained Si structures for the realization of ultra-fast lower-consumption compact silicon modulators; 2) Exploration of a new family of waveguides leading to an automatic satisfaction of energy/momentum conservation for the purpose of Kerr frequency comb generation in integrated photonic platforms. For improving the performances of integrated silicon resonant optical modulators, we have developed a novel Fano cavity resonator enabled by sub-wavelength engineering, leading simultaneously to high extinction ratio (23 dB) with a small Q factor of only 5600, and characterized by an ultra-low power consumption of less than 5 fj/bit when relying on the free carrier plasma dispersion effect. We have further extended the method to design a strained silicon Fano modulation structure which performances traditionally suffer from the weak amplitude of the exploited strain-induced Pockels effect and from considerable microwave losses due to large footprint components. By means of the proposed ultra-compact subwavelength structured Fano resonator, around 200-fold/60-fold (Q factor of 32000/5600) improvement on the modulation extinction ratio with the same driven voltage was theoretically predicted. For improving the exploitation of silicon Kerr nonlinearities, we have proposed a novel family of graded index optical waveguides intending to automatically fulfill the energy and momentum conservation laws of four-wave mixing processes. The design of the waveguide section is based on a principle inherited from quantum wells of wave mechanics and concepts inherited from subwavelength structures for the practical realization of the rather particular index profiles. Standing on these specific waveguides in term of light dispersion, we have applied them to the modeling of frequency micro-combs (e.g. frequency combs generated using micro-ring resonators and a CW light source) by solving the nonlinear relevant equations (Lugiato-Lefever) to dynamically analyze the soliton comb spectrum generation process in various configurations. On top of this model, the specifically automatically phase-matched sub-wavelength-enabled graded-index waveguides were considered to trim and extend the bandwidth of silicon soliton frequency combs, demonstrating enlarged bandwidth and improved spectrum design flexibility with respect to previous works. Overall, one of the dominant features of our study was to contribute to showing that sub-long wavelength photonic structures could provide concrete solutions to problems useful for the realization of on-chip non-linear functions. Subwavelength/nano structures not only benefit to passive photonic circuits which have been intensively developed in the past ten years, but also show strong potentials in the realization of active functions. This subwavelength toolbox is decisive in practice for the concrete achievement of the objectives pursued
Rolly, Brice. „Subwavelength photonic resonators for enhancing light-matter interactions“. Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4366.
Der volle Inhalt der QuelleOptical antennas are structures able to convert, in both ways, electromagnetic energy between a light beam and a source (or absorber) placed in the structure. The use of sub-wavelength resonators enables one to realize this function in an efficient way, on relatively broad bandwidths, and to have a compact design. A good understanding of the optical properties of such resonators, taken individually, and of their couplings, is thus necessary in order to propose efficient optical antenna designs. In this manuscript, using a multipole decomposition of the fields and a T-matrix method, we obtain rigorous analytical solutions for spherical, homogeneous resonators, from which we deduce simplified, intuitive models that are still very close to the exact resolution of the Maxwell equations.Among other results, those models enabled us to propose a nanoantenna design that is at once compact, radiative and efficient, by using a hybrid metallo-dielectric structure. Some collaborations with experimental groups enabled us to validate, on the one hand, the optical characteristics of hybrid chromophores that are self-assembled using a DNA template (S. Bidault, Paris), and on the other hand, the possibility of using multiple combined electric and magnetic resonances (supported by dielectric spheres of moderate refractive index, n=2.45) in order to reflect, or more importantly collect, radiation coming from an electric dipole emitter placed nearby (the experiment was realized in the microwave regime by R. Abdeddaim and J-M. Geffrin)
Wadsworth, Samuel Lanning. „Multilayered planar periodic subwavelength microstructures for generating and detecting circularly polarized thermal infrared radiation“. Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5075.
Der volle Inhalt der QuelleID: 030422966; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 169-181).
Ph.D.
Doctorate
Optics and Photonics
Fievre, Ange Marie P. „Uniquely Identifiable Tamper-Evident Device Using Coupling between Subwavelength Gratings“. FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/1762.
Der volle Inhalt der QuelleMazuir, Clarisse. „Design, fabrication, and testing of high-transparency deep ultra-violet contacts using surface plasmon coupling in subwavelength aluminum meshes“. Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4979.
Der volle Inhalt der QuelleID: 029810223; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 140-145).
Ph.D.
Doctorate
Optics and Photonics
Nuño, ruano Paula. „Optomechanical silicon metamaterials for Brillouin-based devices“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST122.
Der volle Inhalt der QuelleSilicon photonics attracts immense interest in fundamental research and technological and commercial development due to its compatibility with the electronics industry's standard fabrication and processing techniques. Traditionally developed for datacom applications, nowadays, silicon photonics is exploring more fields, such as on-chip signal processing, sensing, on-chip to free-space communications, and even quantum information and computing. This wide range of applications is possible thanks to novel physical phenomena. In this context, Brillouin scattering emerges as a promising tool for the next generation of integrated circuits. This nonlinear interaction between light and mechanical modes of a structure couples optical photons (in the THz regime) with MHz- and GHz-phonons, allowing a very efficient frequency conversion. This property is critical for microwave signal processing and quantum transduction between superconducting qubits and optical fibres. These two technologies are set to revolutionise telecommunications in the coming decades. Novel integrated designs yielding strong optomechanical coupling have been an active research field since the early 2000s. Due to their small size, tight light confinement, and large optical interaction with the structure boundaries, these new geometries promise an exceptional optomechanical response. We contribute to this effort by utilising subwavelength structures to maximise the Brillouin effect by harnessing independent control over optical and mechanical modes. Subwavelength structures, i.e., periodic geometries with a pitch smaller than half the optical wavelength, offer unique control of light propagation, anisotropy, and optical mode engineering. Thanks to recent developments in fabrication facilities, these structures promise a new generation of silicon-on-insulator compact devices with novel capabilities without incorporating new materials
Lou, Fei. „Design, fabrication and characterization of plasmonic components based on silicon nanowire platform“. Doctoral thesis, KTH, Optik och Fotonik, OFO, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-143953.
Der volle Inhalt der QuelleQC 20140404
Ye, Erika. „Periodic subwavelength photonic structures“. Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/111287.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 110-117).
Three applications of the interaction of light with periodic dielectric structures are investigated. The first application is large-area spectroscopy, for which we use the mid-field diffraction pattern generated by the light source passing through a transmission grating to determine its spectral composition. By utilizing a large grating size, we are able to achieve resolutions of < 4 nm experimental while having an etendue of roughly 0.033 mm2. Furthermore, since we are sampling the mid-field light pattern as opposed to the farfield, the entire spectrometer can fit within a 10 mm by 10 mm by 5 mm volume. The second application are barcodes based on the wavelength-dependent back-scattering off of a photonic crystal resonant cavity. The challenge is that we want to observe high quality factor resonant peaks while reducing the size of the crystal to less than 10 microns. So far the highest quality factor observed was about 800. The third application is a Fano silicon photonic crystal modulator waveguide device. The resonant cavity of the modulator is a 1D photonic crystal cavity. If we excite the fundamental and first excited mode of the waveguide, we obtain a Fano resonance that can potentially increase modulation depth and efficiency. We investigated how to improve the modulator architecture to reliably design resonators with sharp Fano resonance peaks. Those these applications are still in their early stages, the are promising for furthering each technology.
by Erika Ye.
M. Eng.
Lombardo, David. „Design and Fabrication of Suspended Waveguides With Photonic Grating Structures“. University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1591796311145344.
Der volle Inhalt der QuelleNikkhah, Hamdam. „Enhancing the Performance of Si Photonics: Structure-Property Relations and Engineered Dispersion Relations“. Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37144.
Der volle Inhalt der QuelleBücher zum Thema "Subwavelength photonics"
Basu, Prasanta Kumar, Bratati Mukhopadhyay und Rikmantra Basu. Semiconductor Nanophotonics. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780198784692.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Subwavelength photonics"
Tsang, Hon Ki, Xia Chen, Zhenzhou Cheng, Wen Zhou und Yeyu Tong. „Subwavelength Silicon Photonics“. In Topics in Applied Physics, 285–321. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68222-4_6.
Der volle Inhalt der QuelleMinin, Igor, und Oleg Minin. „Subwavelength Focusing Properties of Diffractive Photonic Crystal Lens“. In SpringerBriefs in Physics, 21–30. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24253-8_3.
Der volle Inhalt der QuelleLuo, Chiyan, und John D. Joannopoulos. „Negative Refraction and Subwavelength Imaging in Photonic Crystals“. In Negative-Refraction Metamaterials, 269–312. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471744751.ch7.
Der volle Inhalt der QuelleOzbay, Ekmel, und Gonca Ozkan. „Negative Refraction and Subwavelength Focusing in Two-Dimensional Photonic Crystals“. In Physics of Negative Refraction and Negative Index Materials, 149–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72132-1_6.
Der volle Inhalt der QuelleXing, Xiaobo, Huaqing Yu, Debin Zhu, Jiapeng Zheng, Huang Chen, Wei Chen und Jiye Cai. „Subwavelength and Nanometer Diameter Optical Polymer Fibers as Building Blocks for Miniaturized Photonics Integration“. In Optical Communication. InTech, 2012. http://dx.doi.org/10.5772/47822.
Der volle Inhalt der QuelleRadamson, Henry, und Lars Thylén. „Complementing Silicon With Other Materials for Light Emission, Efficient Light Modulation and Subwavelength Light Confinement“. In Monolithic Nanoscale Photonics–Electronics Integration in Silicon and Other Group IV Elements, 151–68. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-12-419975-0.00005-2.
Der volle Inhalt der QuelleOsgood, Richard M., Jerry Icban Dadap und Nicolae C. Panoiu. „Nonlinear optical phenomena in subwavelength photonic nanowires“. In Fundamentals and Applications of Nonlinear Nanophotonics, 289–355. Elsevier, 2024. http://dx.doi.org/10.1016/b978-0-323-90614-2.00008-0.
Der volle Inhalt der Quelle„Artificial Media: Subwavelength Scale Optical Properties“. In Encyclopedia of Optical and Photonic Engineering, Second Edition, 1–9. CRC Press, 2015. http://dx.doi.org/10.1081/e-eoe2-120009537.
Der volle Inhalt der QuelleBenisty, Henri, Jean-Jacques Greffet und Philippe Lalanne. „Localized surface plasmons“. In Introduction to Nanophotonics, 387–406. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780198786139.003.0014.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Subwavelength photonics"
Arnold, Kellen P., Joshua A. Allen, Sami I. Halimi, Landen D. Ryder, Francis O. Afzal, Yusheng Bian, Abdelsalam Aboketaf et al. „Subwavelength-engineered Antislot Photonic Crystals in a Silicon Photonics Foundry for On-chip Communications“. In CLEO: Science and Innovations, STh4P.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sth4p.2.
Der volle Inhalt der QuelleXie, Luyao, und Lawrence R. Chen. „Optical Delay in Subwavelength Grating Waveguides Operating Near the Bandgap“. In Integrated Photonics Research, Silicon and Nanophotonics, IM4G.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/iprsn.2024.im4g.4.
Der volle Inhalt der QuelleZhai, Tingting, Binbin Wang, Kuan-Ting Wu, Jinbong Seok, Sera Kim, Wei-Yen Woon, Remi Vincent, Heejun Yang und Rafael Salas-Montiel. „Subwavelength plasmonic-enhanced graphene-hBN-graphene silicon modulator“. In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/iprsn.2022.iw4b.1.
Der volle Inhalt der QuelleArnold, Kellen P., Joshua A. Allen, Sami I. Halimi, Landen D. Ryder, Francis O. Afzal, Yusheng Bian, Abdelsalam Aboketaf et al. „Deep Subwavelength Slotted Photonic Crystals Fabricated in a Monolithic Silicon Photonics Technology“. In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_at.2023.am4m.6.
Der volle Inhalt der QuelleCunningham, Brian T. „Subwavelength Photonics for Biosensing“. In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/iprsn.2012.iw4c.1.
Der volle Inhalt der QuelleCheben, Pavel. „Subwavelength silicon photonics (Conference Presentation)“. In Smart Photonic and Optoelectronic Integrated Circuits XXI, herausgegeben von El-Hang Lee und Sailing He. SPIE, 2019. http://dx.doi.org/10.1117/12.2506428.
Der volle Inhalt der QuelleHalir, R., J. M. Luque-Gonzalez, A. Sanchez-Postigo, J. Leuermann, A. Hadij-ElHouati, D. Pereira-Martin, J. de-Oliva-Rubio et al. „Subwavelength silicon photonics : Keynote presentation“. In 2020 Photonics North (PN). IEEE, 2020. http://dx.doi.org/10.1109/pn50013.2020.9166943.
Der volle Inhalt der QuelleSchmid, J. H., P. Cheben, D. X. Xu, S. Janz, J. Lapointe, M. Rahim, S. Wang et al. „Subwavelength engineering in silicon photonics“. In 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7734470.
Der volle Inhalt der QuelleMolina-Fernández, Iñigo, Abdelfettah Hadij-Elhouati, José Manuel Luque-González, Daniel Pereira, Alejandro Sánchez Postigo, Gonzalo Wangüenmert-Perez, Alejandro Ortega-Moñux et al. „Subwavelength grating silicon photonic devices“. In Silicon Photonics XVI, herausgegeben von Graham T. Reed und Andrew P. Knights. SPIE, 2021. http://dx.doi.org/10.1117/12.2577455.
Der volle Inhalt der QuelleCheben, Pavel, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. x. Xu, A. Densmore, A. Delâge, B. Lamontagne und T. j. Hall. „Subwavelength Silicon Nanophotonics“. In Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/laop.2010.wi1.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Subwavelength photonics"
Zia, Rashid, und Jonathan A. Kurvits. PECASE: Resonantly-Enhanced Lanthanide Emitters for Subwavelength-Scale, Active Photonics. Fort Belvoir, VA: Defense Technical Information Center, März 2015. http://dx.doi.org/10.21236/ad1003197.
Der volle Inhalt der QuelleJain, Aditya. Photonic molecules for subwavelength light confinement design and applications. Office of Scientific and Technical Information (OSTI), Dezember 2016. http://dx.doi.org/10.2172/1417977.
Der volle Inhalt der Quelle