Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Substrats II-VI“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Substrats II-VI" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Substrats II-VI"
ZAHN, DIETRICH R. T. „PROBING SURFACES AND INTERFACES WITH OPTICAL TECHNIQUES“. Surface Review and Letters 01, Nr. 04 (Dezember 1994): 421–28. http://dx.doi.org/10.1142/s0218625x94000382.
Der volle Inhalt der QuelleNaugle, Jennifer E., Erik R. Olson, Xiaojin Zhang, Sharon E. Mase, Charles F. Pilati, Michael B. Maron, Hans G. Folkesson, Walter I. Horne, Kathleen J. Doane und J. Gary Meszaros. „Type VI collagen induces cardiac myofibroblast differentiation: implications for postinfarction remodeling“. American Journal of Physiology-Heart and Circulatory Physiology 290, Nr. 1 (Januar 2006): H323—H330. http://dx.doi.org/10.1152/ajpheart.00321.2005.
Der volle Inhalt der QuelleJones, K. M., F. S. Hasoon, A. B. Swartzlander, M. M. Al-Jassim, T. L. Chu und S. S. Chu. „The morphology and microstructure of polycrystalline CdTe thin films for solar cell applications“. Proceedings, annual meeting, Electron Microscopy Society of America 50, Nr. 2 (August 1992): 1384–85. http://dx.doi.org/10.1017/s0424820100131553.
Der volle Inhalt der QuelleSato, K., Y. Seki, Y. Matsuda und O. Oda. „Recent developments in II–VI substrates“. Journal of Crystal Growth 197, Nr. 3 (Februar 1999): 413–22. http://dx.doi.org/10.1016/s0022-0248(98)00739-8.
Der volle Inhalt der QuelleWang, Jiawei, Jiahui Li, Yi Hou, Wei Dai, Ruopeng Xie, Tatiana T. Marquez-Lago, André Leier et al. „BastionHub: a universal platform for integrating and analyzing substrates secreted by Gram-negative bacteria“. Nucleic Acids Research 49, Nr. D1 (21.10.2020): D651—D659. http://dx.doi.org/10.1093/nar/gkaa899.
Der volle Inhalt der QuelleKERN, András, Zsófia SZENTPÉTERY, Károly LILIOM, Éva BAKOS, Balázs SARKADI und András VÁRADI. „Nucleotides and transported substrates modulate different steps of the ATPase catalytic cycle of MRP1 multidrug transporter“. Biochemical Journal 380, Nr. 2 (01.06.2004): 549–60. http://dx.doi.org/10.1042/bj20031607.
Der volle Inhalt der QuelleStaudenmann, J. L., R. D. Horning und R. D. Knox. „Buerger precession camera and overall characterization of thin films and flat-plate crystals“. Journal of Applied Crystallography 20, Nr. 3 (01.06.1987): 210–21. http://dx.doi.org/10.1107/s0021889887086813.
Der volle Inhalt der QuelleBrockhausen, Inka, Jeremy P. Carver und Harry Schachter. „Control of glycoprotein synthesis. The use of oligosaccharide substrates and HPLC to study the sequential pathway for N-acetylglucosaminyltransferases I, II, III, IV, V, and VI in the biosynthesis of highly branched N-glycans by hen oviduct membranes“. Biochemistry and Cell Biology 66, Nr. 10 (01.10.1988): 1134–51. http://dx.doi.org/10.1139/o88-131.
Der volle Inhalt der QuelleWitt, Katarzyna, Waldemar Studziński und Daria Bożejewicz. „Possibility of New Active Substrates (ASs) to Be Used to Prevent the Migration of Heavy Metals to the Soil and Water Environments“. Molecules 28, Nr. 1 (22.12.2022): 94. http://dx.doi.org/10.3390/molecules28010094.
Der volle Inhalt der QuelleErnst, K., I. Sieber, M. Neumann-Spallart, M. Ch Lux-Steiner und R. Könenkamp. „Characterization of II–VI compounds on porous substrates“. Thin Solid Films 361-362 (Februar 2000): 213–17. http://dx.doi.org/10.1016/s0040-6090(99)00836-6.
Der volle Inhalt der QuelleDissertationen zum Thema "Substrats II-VI"
Melhem, Hassan. „Epitaxial Growth of Hexagonal Ge Planar Layers on Non-Polar Wurtzite Substrates“. Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPAST011.
Der volle Inhalt der QuelleSilicon and Germanium crystallizing in the cubic diamond (denoted 3C) structure, have been the cornerstone of the electronic industry due to their inherent properties. However, metastable crystal phase engineering has emerged as a powerful method for tuning electronic band structures and conduction properties, enabling new functionalities while maintaining chemical compatibility. Notably, Germanium within the hexagonal 2H phase exhibits a direct bandgap of 0.38 eV. The alloy SixGe(1-x)-2H demonstrates strong light emission with a tunable wavelength ranging from 1.8 µm to 3.5 µm, depending on silicon concentration (40% to 0%). These properties position SixGe(1-x)-2H as a "holy grail material" among group IV semiconductors, with promising applications in mid-infrared light emission (e.g., LEDs and lasers) and detection on silicon platform.Despite recent progress, synthesizing large volumes of high-quality Ge-2H remains a challenge. Until now, Ge-2H has been limited to nanostructures, including nanodomains formed by shear-induced phase transformation, core/shell nanowires, and nanobranches. These approaches restrict active volumes, hindering basic property investigation and scalable device manufacturing. Achieving high-quality planar crystals with controlled doping is essential for advancing SixGe(1-x)-2H integration.This thesis aims to pioneer the synthesis of planar layers of hexagonal Ge using Ultra High Vacuum - Vapor Phase Epitaxy (UHV-VPE) on hexagonal m-plane II-VI substrates such as CdS-2H and ZnS-4H. The work includes developing surface preparation techniques for II-VI compounds and conducting detailed studies on hexagonal structure formation in materials such as GaAs-4H, ZnS-2H (grown via Metal-Organic Chemical Vapor Deposition, MOCVD), and Ge in both 2H and 4H hexagonal phases.A crucial preliminary step involved preparing substrate surfaces, as their quality directly impacts the crystalline quality of the epitaxial layers. Surface preparation included chemical-mechanical polishing with a Br2-MeOH solution to remove surface contaminants, confirmed through XPS analysis. Challenges related to the thermal properties of CdS-2H and ZnS-4H substrates were addressed, including desorption of II-VI compounds and the formation of negative whiskers above 500°C.Epitaxial growth by UHV-VPE posed selectivity constraints on II-VI substrates, prompting the exploration of alternative growth configurations, such as using buffer template layers. This thesis presents the first synthesis of a GaAs layer in the 4H hexagonal structure grown by epitaxy on ZnS-4H m-plane substrate, along with a first characterization of basal stacking faults (BSFs) in this layer. The feasibility of synthesizing Ge on GaAs-4H was also investigated. A significant part of the work was dedicated to growth on the CdS-2H substrates, demonstrating the first Ge layer with nanoscale regions of Ge-2H epitaxy, providing proof of concept for structure replication of Ge-2H on II-VI m-plane surfaces. However, amorphous and highly defective regions were also observed. Process optimization led to the development of ZnS-2H template layers on CdS-2H using MOCVD, circumventing constraints of direct growth on CdS. A thorough investigation of growth regimes revealed a strong impact of growth temperature on the CdS substrate surface, significantly influencing crystalline quality. m-plane ZnS layers grown at 360°C exhibited a pure hexagonal structure with excellent epitaxial orientation relative to CdS-WZ substrates. Strain relaxation occurred through misfit dislocations at the interface due to lattice mismatches of 7.63% and 6.83% along the a- and c-axes, forming basal and prismatic stacking faults on {11-20} planes. Finally, as further proof of concept, the thesis presents evidence supporting the synthesis of a Ge layer with a partial hexagonal phase
Shkurmanov, Alexander, Chris Sturm, Jörg Lenzner, Guy Feuillet, Florian Tendille, Mierry Philippe De und Marius Grundmann. „Selective growth of tilted ZnO nanoneedles and nanowires by PLD of patterned sapphire substrates“. Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-210898.
Der volle Inhalt der QuelleChen, Jie. „Spectroscopic Ellipsometry Studies of II-VI Semiconductor Materials and Solar Cells“. University of Toledo / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1286813480.
Der volle Inhalt der QuelleO'Donnell, Cormac Brendan. „MBE growth and characterisation of ZnSe-based II-VI semiconductors“. Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/524.
Der volle Inhalt der QuelleGros, Patricia. „Epitaxie métal sur semi-conducteur II-VI : cas des terres rares sur CdTe“. Grenoble 1, 1993. http://www.theses.fr/1993GRE10079.
Der volle Inhalt der QuelleKumar, Vishwanath. „Characterization Of Large Area Cadmium Telluride Films And Solar Cells Deposited On Moving Substrates By Close Spaced Sublimation“. [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000218.
Der volle Inhalt der QuelleYa-wen, Tzeng, und 曾雅文. „Interface study of II-VI compound semiconductor thin film grown on GaAs substrate“. Thesis, 2000. http://ndltd.ncl.edu.tw/handle/25036883588018655769.
Der volle Inhalt der Quelle中原大學
物理學系
88
ZnSe buffer layers were grown at low temperature (100 to 250 oC) on the GaAs substrates by molecular beam epitaxy. Resistivity was found to decrease with the growth temperature. While, etch pit density (EPD) of ZnSe epilayer grown at 300 oC on the low temperature ZnSe buffer layers was found independent on the growth temperature of the buffer layer. EPD of the ZnMgSe epilayers, which were grown on the tilted GaAs substrates, was found to decrease with the substrate tilted angle. The result is corroborated with the photoluminescence (PL) measurement, which shows an increasing PL intensity with the tilted substrate angle.
„Monocrystalline ZnTe/CdTe/MgCdTe Double Heterostructure Solar Cells Grown on InSb Substrates by Molecular Beam Epitaxy“. Doctoral diss., 2014. http://hdl.handle.net/2286/R.I.26867.
Der volle Inhalt der QuelleDissertation/Thesis
Doctoral Dissertation Electrical Engineering 2014
Yuvaraj, D. „Studies On The Growth And Characterization Of II-VI Semiconductor Nanostructures By Evaporation Methods“. Thesis, 2009. https://etd.iisc.ac.in/handle/2005/1037.
Der volle Inhalt der QuelleYuvaraj, D. „Studies On The Growth And Characterization Of II-VI Semiconductor Nanostructures By Evaporation Methods“. Thesis, 2009. http://hdl.handle.net/2005/1037.
Der volle Inhalt der QuelleBuchteile zum Thema "Substrats II-VI"
Colibaba, G. V., E. V. Monaico, E. P. Goncearenco, I. Inculet und I. M. Tiginyanu. „Features of Nanotemplates Manufacturing on the II-VI Compound Substrates“. In 3rd International Conference on Nanotechnologies and Biomedical Engineering, 188–91. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-736-9_47.
Der volle Inhalt der QuellePark, Robert M. „ZnSe Growth on Non-Polar Substrates by Molecular Beam Epitaxy“. In Growth and Optical Properties of Wide-Gap II–VI Low-Dimensional Semiconductors, 245–56. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5661-5_24.
Der volle Inhalt der QuelleHobart, Karl D., Fritz J. Kub, Henry F. Gray, Mark E. Twigg, Dowwon Park und Phillip E. Thompson. „Growth of low-dimensional structures on nonplanar patterned substrates“. In Selected Topics in Group IV and II–VI Semiconductors, 338–43. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50072-3.
Der volle Inhalt der QuelleBremond, G., A. Souifi, O. De Barros, A. Benmansour, P. Warren und D. Dutartre. „Photoluminescence characterization of Si1−xGex relaxed “pseudo-substrates” grown on Si“. In Selected Topics in Group IV and II–VI Semiconductors, 116–20. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50032-2.
Der volle Inhalt der QuelleKayambaki, M., R. Callec, G. Constantinidis, Ch Papavassiliou, E. Löchtermann, H. Krasny, N. Papadakis, P. Panayotatos und A. Georgakilas. „Investigation of Si-substrate preparation for GaAs-on-Si MBE growth“. In Selected Topics in Group IV and II–VI Semiconductors, 300–303. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50064-4.
Der volle Inhalt der QuelleKolodzey, J., P. R. Berger, B. A. Orner, D. Hits, F. Chen, A. Khan, X. Shao et al. „Optical and electronic properties of SiGeC alloys grown on Si substrates“. In Selected Topics in Group IV and II–VI Semiconductors, 386–91. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50081-4.
Der volle Inhalt der QuelleLi, Shaozhong, Qi Xiang, Dawen Wang und Kang L. Wang. „Modeling of facet growth on patterned Si substrate in gas source MBE“. In Selected Topics in Group IV and II–VI Semiconductors, 185–89. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50044-9.
Der volle Inhalt der QuelleSochinskii, N. V., J. C. Soares, E. Alves, M. F. da Silva, P. Franzosi, S. Bernardi und E. Diéguez. „Structural properties of CdTe and Hg1−xCdxTe epitaxial layers grown on sapphire substrates“. In Selected Topics in Group IV and II–VI Semiconductors, 195–200. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50123-6.
Der volle Inhalt der QuelleBenisty, Henri, Jean-Jacques Greffet und Philippe Lalanne. „More confined electrons: Quantum dots and quantum wires“. In Introduction to Nanophotonics, 246–72. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780198786139.003.0009.
Der volle Inhalt der QuelleGutheit, T., M. Heinau, H. J. Füsser, C. Wild, P. Koidl und G. Abstreiter. „Molecular beam epitaxial grown Si1−xCx layers on Si(001) as a substrate for MWCVD of diamond“. In Selected Topics in Group IV and II–VI Semiconductors, 426–30. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50088-7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Substrats II-VI"
Uusimma, P., M. Pessa, P. Blood, I. Auffret und C. Cooper. „Blue-green II-VI quantum well lasers“. In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.ctug4.
Der volle Inhalt der QuelleZogg, Hans, A. N. Tiwari, Stefan Blunier, Clau Maissen und Jiri Masek. „Heteroepitaxy of II-VI and IV-VI semiconductors on Si substrates“. In Physical Concepts of Materials for Novel Optoelectronic Device Applications, herausgegeben von Manijeh Razeghi. SPIE, 1991. http://dx.doi.org/10.1117/12.24409.
Der volle Inhalt der QuelleHaase, M. A., J. Qiu, J. M. DePuydt und H. Cheng. „Blue-green II–VI laser diodes“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.tuss1.
Der volle Inhalt der QuelleUeta, A., A. Avramescu, K. Uesugi, T. Numai, I. Suemune, H. Machida und H. Shimoyama. „Selective Area Growth of Widegap II-VI Semiconductors on Patterned Substrates“. In 1997 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1997. http://dx.doi.org/10.7567/ssdm.1997.c-5-2.
Der volle Inhalt der QuelleHaase, Michael A. „Blue-green II-VI Laser Diodes: Progress in Reliability“. In Symposium on Optical Memory. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/isom.1996.ofb.1.
Der volle Inhalt der QuelleOzawa, Masafumi, und Akira Ishibashi. „Room Temperature CW Emission of II-VI Diode lasers“. In Optical Data Storage. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/ods.1994.md4.
Der volle Inhalt der QuelleDi Marzio, Don, David J. Larson, Jr., Louis G. Casagrande, Jun Wu, Michael Dudley, Stephen P. Tobin und Peter W. Norton. „Large-area x-ray topographic screening of II-VI substrates and epilayers“. In SPIE's International Symposium on Optical Engineering and Photonics in Aerospace Sensing, herausgegeben von Herbert K. Pollehn und Raymond S. Balcerak. SPIE, 1994. http://dx.doi.org/10.1117/12.179671.
Der volle Inhalt der QuelleBONEY, C., D. B. EASON, Z. YU, W. C. HUGHES, J. W. COOK, J. F. SCHETZINA, G. CANTWELL und W. C. HARSCH. „Blue/Green Light Emitters Based on II-VI Heterostructures on ZnSe Substrates“. In 1995 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1995. http://dx.doi.org/10.7567/ssdm.1995.s-v-1.
Der volle Inhalt der QuelleIrvine, S. J. C., H. Hill, G. T. Brown, J. E. Hails und J. B. Mullin. „Selective Area Epitaxy of II-VI Compounds by Laser-induced Photo-MOVPE“. In Microphysics of Surfaces, Beams, and Adsorbates. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/msba.1989.tua2.
Der volle Inhalt der QuelleTamargo, Maria C., Ning Dai, Abdullah Cavus, Rhonda Dzakpasu, Wojciech Krystek, Fred H. Pollak, Alph F. Semendy et al. „Growth of wide bandgap II-VI alloys on InP substrates by molecular beam epitaxy“. In Photonics for Industrial Applications, herausgegeben von Robert L. Gunshor und Arto V. Nurmikko. SPIE, 1994. http://dx.doi.org/10.1117/12.197267.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Substrats II-VI"
Wilson, Thomas E., Avraham A. Levy und Tzvi Tzfira. Controlling Early Stages of DNA Repair for Gene-targeting Enhancement in Plants. United States Department of Agriculture, März 2012. http://dx.doi.org/10.32747/2012.7697124.bard.
Der volle Inhalt der Quelle