Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Substrate rigidity“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Substrate rigidity" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Substrate rigidity"
Wang, Hong-Bei, Micah Dembo und Yu-Li Wang. „Substrate flexibility regulates growth and apoptosis of normal but not transformed cells“. American Journal of Physiology-Cell Physiology 279, Nr. 5 (01.11.2000): C1345—C1350. http://dx.doi.org/10.1152/ajpcell.2000.279.5.c1345.
Der volle Inhalt der QuelleDoss, Bryant L., Meng Pan, Mukund Gupta, Gianluca Grenci, René-Marc Mège, Chwee Teck Lim, Michael P. Sheetz, Raphaël Voituriez und Benoît Ladoux. „Cell response to substrate rigidity is regulated by active and passive cytoskeletal stress“. Proceedings of the National Academy of Sciences 117, Nr. 23 (22.05.2020): 12817–25. http://dx.doi.org/10.1073/pnas.1917555117.
Der volle Inhalt der QuelleO'Connor, Roddy, Xueli Hao, Keyue Shen, Keenan Bashour, Lance Kam und Michael Milone. „Substrate rigidity regulates human T cell activation and proliferation (52.9)“. Journal of Immunology 188, Nr. 1_Supplement (01.05.2012): 52.9. http://dx.doi.org/10.4049/jimmunol.188.supp.52.9.
Der volle Inhalt der QuelleBanerjee, S., und M. C. Marchetti. „Substrate rigidity deforms and polarizes active gels“. EPL (Europhysics Letters) 96, Nr. 2 (28.09.2011): 28003. http://dx.doi.org/10.1209/0295-5075/96/28003.
Der volle Inhalt der QuelleYork, B. R., S. A. Solin, N. Wada, Rasik H. Raythatha, Ivy D. Johnson und Thomas J. Pinnavaia. „Substrate rigidity effects in mixed layered solids“. Solid State Communications 54, Nr. 6 (Mai 1985): 475–78. http://dx.doi.org/10.1016/0038-1098(85)90650-7.
Der volle Inhalt der QuelleLovett, David B., Nandini Shekhar, Jeffrey A. Nickerson, Kyle J. Roux und Tanmay P. Lele. „Modulation of Nuclear Shape by Substrate Rigidity“. Cellular and Molecular Bioengineering 6, Nr. 2 (05.02.2013): 230–38. http://dx.doi.org/10.1007/s12195-013-0270-2.
Der volle Inhalt der QuelleRoberts, M. W., C. B. Clemons, J. P. Wilber, G. W. Young, A. Buldum und D. D. Quinn. „Continuum Plate Theory and Atomistic Modeling to Find the Flexural Rigidity of a Graphene Sheet Interacting with a Substrate“. Journal of Nanotechnology 2010 (2010): 1–8. http://dx.doi.org/10.1155/2010/868492.
Der volle Inhalt der QuelleGong, Ze, Spencer E. Szczesny, Steven R. Caliari, Elisabeth E. Charrier, Ovijit Chaudhuri, Xuan Cao, Yuan Lin et al. „Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates“. Proceedings of the National Academy of Sciences 115, Nr. 12 (05.03.2018): E2686—E2695. http://dx.doi.org/10.1073/pnas.1716620115.
Der volle Inhalt der QuelleChaky, J., K. Anderson, M. Moss und L. Vaillancourt. „Surface Hydrophobicity and Surface Rigidity Induce Spore Germination in Colletotrichum graminicola“. Phytopathology® 91, Nr. 6 (Juni 2001): 558–64. http://dx.doi.org/10.1094/phyto.2001.91.6.558.
Der volle Inhalt der QuelleWang, ZQ, ZL Dan und J. Wu. „A Simple Solution to the Cylindrical Indentation of an Elastic Compressible Thin Layer Resting on a Rigid Substrate“. Journal of Physics: Conference Series 2095, Nr. 1 (01.11.2021): 012094. http://dx.doi.org/10.1088/1742-6596/2095/1/012094.
Der volle Inhalt der QuelleDissertationen zum Thema "Substrate rigidity"
Wang, Guan. „Roles of substrate rigidity and composition in membrane trafficking“. Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC195.
Der volle Inhalt der QuelleFrom brain to bones, stiffness and composition of the extracellular matrix vary greatly and play a role in cell responses. Substrate rigidity also impacts plasma membrane tension, which has a close relationship with membrane trafficking. How substrate rigidity and chemistry sensing may regulate exocytosis, which in turn regulates membrane tension, is still largely unknown. Here, I used pHluorin imaging of single vesicle exocytosis in cells cultured on substrates of controlled rigidity and composition to explore the regulation of VAMP2 and VAMP7-mediated exocytosis. I developed a computer software to automatically identify fusion events thus allowing quick analysis of batch data. I contributed to the study showing that VAMP7 exocytosis is regulated by src kinase which phosphorylates VAMP7 in its Longin domain (LD) (Burgo et al. JBC 2013). I further found that VAMP7 but not VAMP7 lacking LD- or VAMP2-mediated secretion was stimulated by substrate stiffness on laminin. VAMP7 and VAMP7 lacking LD were similarly sensitive to osmotic chock-induced membrane tension changes. Finally, i showed that LRRK1, a regulator of egf receptor transport, is a partner of the LD, and controls the retrograde transport of VAMP7. These approaches allowed me to reveal a new mechanism whereby substrate rigidity, by acting on integrin signalling, enhances VAMP7 exocytosis via LRRK1- and Rab21-dependent regulation of its peripheral readily-releasable pool (Wang et al. submitted). This mechanism may have broad potential relevance for plasma membrane dynamics in normal conditions and diseases, particularly cancer
Manifacier, Ian. „Understanding adherent cell mechanics and the influence of substrate rigidity“. Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4106/document.
Der volle Inhalt der QuelleTissue engineering is a medical strategy based on utilizing cells and materials to regenerate a new tissue. Yet, it involves intertwined interactions that allow cells to act as integrated parts of an organ. In addition to chemical reactions, the cell interacts mechanically with its environment by sensing its rigidity. Here, we used several computational models to understand how substrate rigidity affects a cell’s structure as it adheres and spreads on it. In other words we tried to understand the way a cell feels how soft or hard it surrounding is, how it affects its internal structure and the forces that transit within it. In addition, instead of focusing on mechanical properties, we developed a simplified, yet coherent conceptual understanding of the cellular structure
Frey, Margo Tilley. „Development of a Substrate with Photo-Modulatable Rigidity for Probing Spatial and Temporal Responses of Cells to Mechanical Signals: A Dissertation“. Digital WPI, 2008. https://digitalcommons.wpi.edu/etd-dissertations/337.
Der volle Inhalt der QuelleDutour, Provenzano Gaëlle. „Role of intermediate filaments in mechanotransduction“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS364.
Der volle Inhalt der QuelleCells continuously adapt to their microenvironment. In particular, they modulate their morphology, growth, division, and motility according to the biochemical and physical properties of the extracellular matrix (ECM). Cells are equipped with adhesive structures called FAs, allowing them to interact with ECM proteins through the core transmembrane proteins called integrins and to sense the nature and the rigidity of the ECM. This information are transduced by FA proteins and lead, for instance, to changes in acto-myosin-mediated mechanical tension. Downstream signalling pathways also reach the nucleus; gene expression is then modified and may, in return, affect the composition of FAs or of the ECM proteins for adaptative cell response. Here, we hypothesized that, in addition to signalling pathways, a direct mechanical coupling between the events occurring at the cell periphery and the nucleus may participate in the transmission of mechanical cues and the regulation of nuclear functions. Although intermediate filaments (IFs) have extremely interesting mechanical properties and resist high tension load, their involvement in mechanotransduction pathways remains elusive. Using astrocyte as a model, due to its specific combination of IFs: vimentin, GFAP, nestin, and synemin, we studied first the effect of substrate rigidity on the nucleus morphology and function, and on the organisation of IFs around the nucleus. Then, we investigated the role of IFs in rigidity-induced nuclear changes. Using a combination of microfabrication techniques, biochemical and microscopy methods, we showed that substrate rigidity affects the nucleus shape, volume, and structure of the chromatin and the recruitment of transcription factor (YAP) and IFs are mediating these changes. Our results suggest that IFs form a cage-like structure around the nucleus in a rigidity-dependent manner: stiffer substrates promote the formation of a cage of vimentin and nestin. In the absence of IFs, the nuclear changes induced by rigidity are different than with IF. The nucleus increases its size in soft substrate, together with an increase in tension measured by YAP localising in the nucleus. The structure of the chromatin is changed. Altogether, the results obtained during our investigation give a better understanding of the role of intermediate filaments in the mechanosensitive nuclear responses
Ehlinger, Claire. „Influence de la rigidité du substrat sur la migration des cellules souches de la pulpe dentaire“. Thesis, Strasbourg, 2020. http://www.theses.fr/2020STRAE001.
Der volle Inhalt der QuelleMigration of dental pulp stem cells (DPSCs) is a fundamental aspect of dental tissue engineering. The objective of this thesis is to investigate the influence of substrate stiffness on DPSCs migration. In the first part of this thesis, we showed that DPSCs are able to survive and proliferate on polydimethylsiloxane substrates (PDMS) with a Young's modulus of 1.5 kPa to 2.5 MPa without differentiating themselves. We observed that the average speed of DPSCs is increased on substrates with low stiffness. In addition, the Yes-associated protein (YAP) maintains a nuclear localization even on PDMS with low rigidity. Finally, we have shown that on a substrate with two different stiffnesses, DPSCs do not adopt any preferential migration direction, unlike the process of durotaxis classically described in the literature
Wang, Bin. „Réalisation et étude de substrates de rigidité modulable et de dispositifs intégrables pour l'ingénierie cellulaire et tissulaire“. Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE043/document.
Der volle Inhalt der QuelleThe purpose of this work is to develop manufacturable cell culture substrates and devices for large scale applications. By using both conventional and non-conventional lithography techniques, we firstly fabricated dense elastomer pillar arrays with height gradient for cell migration studies and we observed remarkable cell elongation and directed cell migration, all depending on the strength of the stiffness gradient. Elastomer micropillars could also be organized in ripple-like height gradient patterns, showing similar cell behaviors. Based on a biomimetic approach, we produced nanofibers on both side of a membrane with through holes for three-dimensional cell adhesion and migration. Our results showed that such a 3D scaffold can promote the cell infiltration and proliferation. Finally, we used micropillar arrays of different height as stiffness controlled substrate for cardiomyocytes differentiation from human induced pluripotent stem cells (hiPSCs). With the help of an elastomer stencil, uniform embryoids could be obtained and derived to the targeting cells on the substrate of different stiffness, showing a clear stiffness dependence of the substrates
Flick, Florence. „La plasticité de la chromatine oriente le destin des cellules saines et des cellules cancéreuses sur des matrices de faibles rigidités“. Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE020/document.
Der volle Inhalt der QuelleThe aim of this thesis is to investigate the influence of soft hydrogels on the chromatin plasticity of epithelial PtK2 and cancer cells SW480. On soft hydrogels, the chromatin of PtK2 cells is organized in heterochromatin. The very soft hydrogels direct the cell death by necrosis. On these substrates, the euchromatin maintained by inhibition of HDAC guides the cells into quiescence. These cells transferred on stiff substrate enter in mitosis. A process of metastatic dissemination is developed from cancer cells grown on very soft hydrogels (E20) and stiff surfaces (glass). On the 1st seeding on E20, cells die. The 2nd seeding on E20 shows that cell viability, motility and heterochromatin percentage increase. On the 3rd seeding on E20, survival and motility continue to increase while the heterochromatin percentage decrease. From the 1st- 2nd E20 seeding, cells respond to a heterochromatin-dependent process of metastatic dissemination and from the 3rd-4th E20 seeding to an euchromatin-dependent process
Hovhannisyan, Yeranuhi. „Modélisation cardiaque des myopathies myofibrillaires à l'aide de cellules souches pluripotentes induites pour explorer la pathogenèse cardiaque Polyacrylamide Hydrogels with Rigidity-Independent Surface Chemistry Show Limited Long-Term Maintenance of Pluripotency of Human Induced Pluripotent Stem Cells on Soft Substrates Modéliser la myopathie myofibrillaire pour élucider la pathogenèse cardiaque Synemin-related skeletal and cardiac myopathies: an overview of pathogenic variants Desmin prevents muscle wasting, exaggerated weakness and fragility, and fatigue in dystrophic mdx mouse Effects of the selective inhibition of proteasome caspase-like activity by CLi a derivative of nor-cerpegin in dystrophic mdx mice“. Thesis, Sorbonne université, 2020. http://www.theses.fr/2020SORUS095.
Der volle Inhalt der QuelleMyofibrillar Myopathy is a slowly progressive neuromuscular disease characterized by severe muscular disorders caused by mutations in the gene encoded cytoskeletal proteins. One of the genes described in connection with the development of MFM is DES. Mutations in the desmin gene lead to skeletal and cardiac muscles myopathies. However, the cardiac pathological consequences caused by them remain poorly understood. My objective is to create an in vitro human stem cell model of MFM to specifically investigate the role of patient-specific mutations in desmin on cardiac lineage development and function. To achieve that objective, in collaboration with Drs. Behin and K. Wahbi and Phenocell, we generate patient-specific iPSC from peripheral blood cells of the patient suffering severel form of desmin-deficient cardiomyopathy. The generated iPSC lines carrying DES gene mutations enable a powerful examination of the role of desmin mutation on cardiomyocyte specification and function. Bioenergetic, structural, and contractile function will be assessed in a single cell. In conclusion, it should be noted that desmin mutations lead to a disorganization of sarcomere structures in cardiomyocytes and to a perturbation of mitochondrial protein expression. This leads to a distortion of functions in the mitochondria. These data facilitate the understanding of the molecular pathway underlying the development of desmin-related myopathy. And the system we have created could also allow us to better evaluate the correlation between the desmin genotype and phenotype in terms of effect on the heart
Gerardo, Heloísa Salguinho. „Modulation of induced pluripotency by substrate rigidity“. Master's thesis, 2014. http://hdl.handle.net/10316/31330.
Der volle Inhalt der QuelleAs células estaminais mesenquimais (MSCs) são células estaminais adultas, multipotentes, capazes de se auto renovar e diferenciar em diferentes tipos celulares dentro das linhagens de origem mesenquimal. A colheita de células estaminais mesenquimais é feita a partir de tecidos mesenquimais e também de tecidos extra embrionários. Estes últimos constituem uma boa fonte de MSCs, sendo estas mais naïve e com maior potencial de proliferação do que MSCs de tecidos adultos, características que fazem com que MSCs da matriz do cordão umbilical sejam um tipo celular muito apelativo para experiências de reprogramação. A geração de células estaminais pluripotentes induzidas (iPSCs), nomeadamente a partir de MSCs, tem sido documentada na literatura por diferentes autores, no entanto sempre associada a uma baixa eficiência. É sabido que células estaminais pluripotentes e os seus núcleos têm propriedades elásticas distintas daquelas apresentadas por células diferenciadas e células estaminais adultas (e os seus respectivos núcleos). A partir destas observações colocámos a hipótese de que, através da modulação da rigidez de MSCs, poderíamos aumentar a eficiência do processo de reprogramação usando um vector lentiviral que codifica factores de pluripotência. O núcleo está mecanicamente acoplado a elementos do citoesqueleto através do complexo LINC (ligante do nucleoesqueleto ao citoesqueleto) e desta forma as forças mecânicas vindas da matriz extracelular podem ser transmitidas através do citoesqueleto até ao núcleo. Dependendo da rigidez do substrato, o núcleo está sob maior ou menor tensão, sendo eventualmente possível modular o seu módulo elástico se as células forem plaqueadas em plataformas com diferentes graus de rigidez. Com este trabalho demonstrámos que ao plaquear MSCs em substratos com distintos graus de rigidez, é possível torná-las mais propícias a uma total reprogramação. Para além disto, verificou-se também um aumento na expressão de genes de pluripotência devido apenas ao facto de MSCs serem mantidas em cultura em substratos específicos. Ao analisarmos o estado de compactação da cromatina, bem como a área nuclear tornou-se evidente o efeito que a rigidez dos substratos tem sobre as células. Assim sendo, os rácios do conteúdo eucromático e heterocromático dos núcleos, bem como a área nuclear mostraram ser modulados, o que sugere que os núcleos sofrem mecanomodulação. Foram também observadas diferenças no que ao tamanho das Adesões focais (FAs) e à organização das fibras de actina diz respeito. Tomando em conjunto todos os nossos resultados, verificou-se que é possível melhorar o processo de reprogramação através da modulação da rigidez do substrato, e que o mecanismo por detrás desta melhoria pode estar intimamente relacionado com a mecanomodulação do núcleo. Este progresso na geração de iPSCs humanas, recorrendo a substratos de rigidez definida, dá indícios de que os protocolos habituais de reprogramação celular em plataformas convencionais de cultura de células podem ser substancialmente melhorados plaqueando as células nesses mesmos substratos. Deste modo, aumentado a eficiência e a cinética da geração de células estaminais pluripotentes induzdas, estudos futuros poderão explorar a utilização de vectores de reprogramação não integrativos, considerados mais seguros para possíveis aplicações clínicas.
Mesenchymal stem cells (MSCs) are multipotent adult stem cells able to self-renew and differentiate into several cell types within mesenchymal origin, which can be collected from adult mesenchymal tissues, and also from extra-embryonic tissues. The latter constitute a good source of MSCs, being more naïve and having a more proliferative potential than MSCs from adult tissues, features that make umbilical cord matrix MSCs an appealing cell type for the generation of induced pluripotent stem cells (iPSCs). The generation of human iPSCs, namely from human MSCs, has been reported, although with a low efficiency. It is known that pluripotent stem cells and their nuclei possess distinct elastic properties from differentiated and adult stem cells (and respective nuclei). We hypothesize that, by modulating the rigidity of MSCs, it may be possible to enhance the reprogramming efficiency using a lentiviral vector encoding pluripotency factors. The nucleus is mechanically coupled to cytoskeletal elements by the LINC (Linker of Nucleoskeleton to Cytoskeleton) complex, thus mechanical forces from the extracellular matrix can be transmitted through the cytoskeleton to the nucleus. Depending on substrate stiffness, the nucleus is under more or less tension, eventually being possible to modulate its rigidity by culturing the cells on platforms with distinct degrees of stiffness. Here we demonstrated that MSCs plated on substrates with distinct range of rigidity showed different degrees of efficiency to fully reprogram. Moreover, it was shown that maintaining MSCs on specific substrates enhanced the expression of pluripotency genes. The effect of substrate rigidity on the cells was evident when chromatin compaction and nuclear area were analyzed. Thus, nuclear euchromatic and heterochromatic content ratios and area could be modulated, suggesting that nuclei were subjected to mechanomodulation. Differences were also observed in what concerns the size of Focal adhesions (FAs) and the assembling of actin stress fibers. Taken together, our results suggest that it is possible to improve the reprogramming process by modulating the substrate rigidity, and that the mechanism responsible for this improvement could be intimately related with the mechanomodulation of the nuclei. The enhanced generation of human iPSCs cells using substrates with defined stiffness indicates that the current cell reprogramming protocols can be substantially improved by seeding the cells on such substrates. Thus, by improving the efficiency and kinetics of iPSCs generation, future strategies may be further explored using non integrative reprograming delivery strategies, considered safer for putative future clinical applications.
„Harnessing cell response to substrate rigidity for tissue engineering applications using novel substrates with patterned elasticity“. Thesis, 2010. http://hdl.handle.net/1911/62067.
Der volle Inhalt der QuelleBücher zum Thema "Substrate rigidity"
Leo, Sarah Elizabeth De. Human T cell response to substrate rigidity for design of improved expansion platform. [New York, N.Y.?]: [publisher not identified], 2014.
Den vollen Inhalt der Quelle findenHu, Mufeng. Biomaterial-based Cell Culture Platform for Podocyte Phenotype Study with Shape and Substrate Rigidity Control. [New York, N.Y.?]: [publisher not identified], 2016.
Den vollen Inhalt der Quelle findenChander, Ashok Coil. Integrin-Linked Kinase, ECM Composition, and Substrate Rigidity Regulate Focal Adhesion - Actin Coupling, Modulating Survival, Proliferation and Migration: Towards a Biophysical Cancer Biomarker. [New York, N.Y.?]: [publisher not identified], 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Substrate rigidity"
Sarvestani, Alireza S. „Effect of Substrate Rigidity on the Growth of Nascent Adhesion Sites“. In Advances in Cell Mechanics, 225–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17590-9_7.
Der volle Inhalt der QuelleWong, Stephanie, Wei-hui Guo, Ian Hoffecker und Yu-li Wang. „Preparation of a Micropatterned Rigid-Soft Composite Substrate for Probing Cellular Rigidity Sensing“. In Methods in Cell Biology, 3–15. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-800281-0.00001-4.
Der volle Inhalt der QuelleTobeña, Adolf. „Distinguishing Partisan and Extremist Brains?: Research Paths Toward Neural Signatures of Violent Radicalism“. In Global War on Terrorism - Revisited [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1003276.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Substrate rigidity"
McGarry, Patrick, Robert M. McMeeking, Anthony G. Evans und Vikram S. Deshpande. „Modeling the Active Response of Cells to Mechanical Stimulation“. In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193071.
Der volle Inhalt der QuelleZhou, Hang, Naoto Isozaki, Kazuki Ukita, Taviare L. Hawkins, Jennifer L. Ross und Ryuji Yokokawa. „Flexural Rigidity of Microtubules Measured by Gold Stripe-Patterned Substrate“. In 2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS). IEEE, 2020. http://dx.doi.org/10.1109/nems50311.2020.9265570.
Der volle Inhalt der QuelleBao, Yuanye, Zhaobin Guo und Ting-Hsuan Chen. „Left-right asymmetry in cell orientation requires high substrate rigidity“. In 2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED). IEEE, 2015. http://dx.doi.org/10.1109/nanomed.2015.7492496.
Der volle Inhalt der QuelleChang, Wei-Jen, Nadeen Chahine und Pen-Hsiu Grace Chao. „Effects of Composite Substrate Microstructure on Fibroblast Morphology and Migration“. In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53859.
Der volle Inhalt der QuelleJagodnik, John J., und Sinan Mu¨ftu¨. „A Model for Analyzing Multi-Asperity Contact of Thin Sheets With Real Surfaces on Both Sides“. In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63862.
Der volle Inhalt der QuelleTondon, Abhishek, und Roland Kaunas. „The Direction of Cyclic Stretch-Induced Cell and Stress Fiber Alignment Depends on Matrix Rigidity“. In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14794.
Der volle Inhalt der QuelleSu, Fong-Chin, Fang-Yu Shao, Chia-Ching Wu, Ming-Long Yeh und Ming-Jer Tang. „Involvement of focal adhesion kinase in cell adhesion force on different substrate rigidity“. In 2009 IEEE 35th Annual Northeast Bioengineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/nebc.2009.4967781.
Der volle Inhalt der QuelleFu, Jianping. „Mechanical Regulation of Stem Cell Differentiation on Geometrically Modulated Elastomeric Substrates“. In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13199.
Der volle Inhalt der QuelleFu, Jianping. „Micro-Engineered Sythetical Extrocellular Metrix for Stem Cell Differentiation Study“. In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19312.
Der volle Inhalt der QuelleJiang, B., M. A. Shannon und M. L. Philpott. „Compliant Mesoscale Grinding of 3-Dimensional Free Form Shapes in Silicon Wafers“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32898.
Der volle Inhalt der Quelle