Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Su-Schrieffer-Heeger model.

Zeitschriftenartikel zum Thema „Su-Schrieffer-Heeger model“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Su-Schrieffer-Heeger model" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Zoli, Marco. „Spectral properties of the Su–Schrieffer–Heeger model“. Solid State Communications 122, Nr. 10 (Juni 2002): 531–35. http://dx.doi.org/10.1016/s0038-1098(02)00183-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zoli, Marco. „Thermodynamics of a continuum Su–Schrieffer–Heeger model“. Physica B: Condensed Matter 344, Nr. 1-4 (Februar 2004): 372–78. http://dx.doi.org/10.1016/j.physb.2003.10.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zoli, Marco. „Dimensionality effects on the Su–Schrieffer–Heeger model“. Physica C: Superconductivity 384, Nr. 3 (Februar 2003): 274–82. http://dx.doi.org/10.1016/s0921-4534(02)01883-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

ZOLI, M. „Polaronic features in the Su?Schrieffer?Heeger model“. Physica B: Condensed Matter 329-333 (Mai 2003): 1554–55. http://dx.doi.org/10.1016/s0921-4526(02)02292-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Oztas, Z., und N. Candemir. „Su-Schrieffer-Heeger model with imaginary gauge field“. Physics Letters A 383, Nr. 15 (Mai 2019): 1821–24. http://dx.doi.org/10.1016/j.physleta.2019.02.037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kwapisz, Jan H., und Leszek Z. Stolarczyk. „Applications of Hückel-Su-Schrieffer-Heeger method“. Structural Chemistry 32, Nr. 4 (11.05.2021): 1393–406. http://dx.doi.org/10.1007/s11224-021-01782-2.

Der volle Inhalt der Quelle
Annotation:
AbstractThe equilibrium carbon-carbon (C-C) bond lengths in π-electron hydrocarbons are very sensitive to the electronic ground-state characteristic. In the recent two papers by Stolarczyk and Krygowski (J Phys Org Chem, 34:e4154,e4153, 2021) a simple quantum approach, the Augmented Hückel Molecular Orbital (AugHMO) model, is proposed for the qualitative, as well as quantitative, study of this phenomenon. The simplest realization of the AugHMO model is the Hückel-Su-Schrieffer-Heeger (HSSH) method, in which the resonance integral β of the HMO model is a linear function the bond length. In the present paper, the HSSH method is applied in a study of C-C bond lengths in a set of 34 selected polycyclic aromatic hydrocarbons (PAHs). This is exactly the set of molecules analyzed by Riegel and Müllen (J Phys Org Chem, 23:315, 2010) in the context of their electronic-excitation spectra. These PAHs have been obtained by chemical synthesis, but in most cases no diffraction data (by X-rays or neutrons) of sufficient quality is available to provide us with their geometry. On the other hand, these PAHs are rather big (up to 96 carbon atoms), and ab initio methods of quantum chemistry are too expensive for a reliable geometry optimization. That makes the HSSH method a very attractive alternative. Our HSSH calculations uncover a modular architecture of certain classes of PAHs. For the studied molecules (and their fragments – modules), we calculate the values of the aromaticity index HOMA.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Jin, Kyung-Hwan, und Feng Liu. „1D topological phases in transition-metal monochalcogenide nanowires“. Nanoscale 12, Nr. 27 (2020): 14661–67. http://dx.doi.org/10.1039/d0nr03529g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yahyavi, M., L. Saleem und B. Hetényi. „Variational study of the interacting, spinless Su–Schrieffer–Heeger model“. Journal of Physics: Condensed Matter 30, Nr. 44 (11.10.2018): 445602. http://dx.doi.org/10.1088/1361-648x/aae0a4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Vos, Fernando L. J., Daniel P. Aalberts und Wim van Saarloos. „Su-Schrieffer-Heeger model applied to chains of finite length“. Physical Review B 53, Nr. 22 (01.06.1996): 14922–28. http://dx.doi.org/10.1103/physrevb.53.14922.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Michielsen, Kristel, und Hans De Raedt. „Quantum molecular dynamics study of the Su-Schrieffer-Heeger model“. Zeitschrift für Physik B Condensed Matter 103, Nr. 3 (April 1997): 391–400. http://dx.doi.org/10.1007/s002570050393.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Chao, K. A., und Y. Wang. „Phonon modes in the Su-Schrieffer-Heeger model for polyacetylene“. Journal of Physics C: Solid State Physics 18, Nr. 36 (30.12.1985): L1127—L1132. http://dx.doi.org/10.1088/0022-3719/18/36/003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Coutant, Antonin, Vassos Achilleos, Olivier Richoux, Georgios Theocharis und Vincent Pagneux. „Subwavelength Su-Schrieffer-Heeger topological modes in acoustic waveguides“. Journal of the Acoustical Society of America 151, Nr. 6 (Juni 2022): 3626–32. http://dx.doi.org/10.1121/10.0011550.

Der volle Inhalt der Quelle
Annotation:
Topological systems furnish a powerful way of localizing wave energy at edges of a structured material. Usually, this relies on Bragg scattering to obtain bandgaps with nontrivial topological structures. However, this limits their applicability to low frequencies because that would require very large structures. A standard approach to address the problem is to add resonating elements inside the material to open gaps in the subwavelength regime. Unfortunately, generally, one has no precise control on the properties of the obtained topological modes, such as their frequency or localization length. In this work, a unique construction is proposed to couple acoustic resonators such that acoustic modes are mapped exactly to the eigenmodes of the Su-Schrieffer-Heeger (SSH) model. The relation between energy in the lattice model and the acoustic frequency is controlled by the characteristics of the resonators. In this way, SSH topological modes are obtained at any given frequency, for instance, in the subwavelength regime. The construction is also generalized to obtain well-controlled topological edge modes in alternative tunable configurations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Ribeiro Junior, Luiz Antonio, Wiliam Ferreira da Cunha, Antonio Luciano de Almeida Fonseca, Ricardo Gargano und Geraldo Magela e Silva. „Concentration effects on intrachain polaron recombination in conjugated polymers“. Physical Chemistry Chemical Physics 17, Nr. 2 (2015): 1299–308. http://dx.doi.org/10.1039/c4cp04514a.

Der volle Inhalt der Quelle
Annotation:
The influence of different charge carrier concentrations on the recombination dynamics between oppositely charged polarons is numerically investigated using a modified version of the Su–Schrieffer–Heeger (SSH) model that includes an external electric field and electron–electron interactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

da Cunha, Wiliam Ferreira, Luiz Antonio Ribeiro Junior, Ricardo Gargano und Geraldo Magela e Silva. „Critical temperature and products of intrachain polaron recombination in conjugated polymers“. Phys. Chem. Chem. Phys. 16, Nr. 32 (2014): 17072–80. http://dx.doi.org/10.1039/c4cp02184c.

Der volle Inhalt der Quelle
Annotation:
The intrachain recombination dynamics between oppositely charged polarons is theoretically investigated through the use of a version of the Su–Schrieffer–Heeger (SSH) model modified to include an external electric field, an extended Hubbard model, Coulomb interactions, and temperature effects in the framework of a nonadiabatic evolution method.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

AMARAL, MARCIA G. DO, und C. ARAGÃO DE CARVALHO. „A HYBRID MONTE CARLO STUDY OF THE SU-SCHRIEFFER-HEEGER MODEL“. International Journal of Modern Physics C 05, Nr. 03 (Juni 1994): 459–81. http://dx.doi.org/10.1142/s0129183194000659.

Der volle Inhalt der Quelle
Annotation:
We study, using the Hybrid Monte Carlo Method, the behavior of the spinless SuSchrieffer-Heeger model that describes conducting polymers, as a function of the Yukawa coupling constant, the fermion mass and the chemical potential, which simulates doping. We measure the expectation value of the bosonic fields, φ, and of the fermionic fields, [Formula: see text], in the phase space of all parameters. We exhibit the phase diagram of the theory and look for the presence of solitons, polarons and bipolarons in the configurations generated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Li, Xin, Yan Meng, Xiaoxiao Wu, Sheng Yan, Yingzhou Huang, Shuxia Wang und Weijia Wen. „Su-Schrieffer-Heeger model inspired acoustic interface states and edge states“. Applied Physics Letters 113, Nr. 20 (12.11.2018): 203501. http://dx.doi.org/10.1063/1.5051523.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Jiang, Jie. „Optical Absorption Spectra in Zigzag Fullerene Tubes“. Modern Physics Letters B 11, Nr. 15 (30.06.1997): 667–72. http://dx.doi.org/10.1142/s0217984997000815.

Der volle Inhalt der Quelle
Annotation:
The optical absorption spectra of zigzag fullerene tubes have been studied by using the extended Su–Schrieffer–Heeger model with the Coulomb interaction included. The numerical results indicate that the carbon number and the Coulomb interaction have great effects on the optical absorption spectra.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

MICHIELSEN, KRISTEL, und HANS DE RAEDT. „METAL-INSULATOR TRANSITION AND FRÖHLICH CONDUCTIVITY IN THE SU-SCHRIEFFER-HEEGER MODEL“. Modern Physics Letters B 10, Nr. 18 (10.08.1996): 855–61. http://dx.doi.org/10.1142/s0217984996000973.

Der volle Inhalt der Quelle
Annotation:
A quantum molecular dynamics technique is used to study the single-particle density of states, Drude weight, optical conductivity and flux quantization in the Su-Schrieffer-Heeger (SSH) model. Our simulation data show that the SSH model has a metal-insulator transition away from half-filling. In the metallic phase the electron transport is collective and shows the features characteristic of Fröhlich conductivity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Borja, Carla, Esther Gutiérrez und Alexander López. „Emergence of Floquet edge states in the coupled Su–Schrieffer–Heeger model“. Journal of Physics: Condensed Matter 34, Nr. 20 (15.03.2022): 205701. http://dx.doi.org/10.1088/1361-648x/ac5865.

Der volle Inhalt der Quelle
Annotation:
Abstract The emergence of non equilibrium topological phases in low dimensional systems offers an interesting route for material properties engineering. We analyze the dynamical modulation of two coupled one-dimensional chains, described by the Su–Schrieffer–Heeger model. We find that the interplay of driving interactions and interchain coupling leads to the emergence of non-equilibrium edge states with nontrivial topological properties. Using an effective Hamiltonian approach, we quantify the emergent topological phases via the winding number and show that oscillations in the mean pseudospin polarization arise as a consequence of the periodic modulation. The patterns of these pseudospin oscillations are different for the static trivial and topological phases offering a dynamical means to distinguish both physical configurations. The system also exhibits non integer values of the winding number, which have been recently reported experimentally in connection to spin textures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Li, Shuai, Min Liu, Fuli Li und Bo Liu. „Topological phase transition of the extended non-Hermitian Su-Schrieffer-Heeger model“. Physica Scripta 96, Nr. 1 (11.11.2020): 015402. http://dx.doi.org/10.1088/1402-4896/abc580.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Wu, C. Q., X. Sun und Y. Kawazoe. „Quantum effects on the phonon excitations of the Su-Schrieffer-Heeger model“. Synthetic Metals 85, Nr. 1-3 (März 1997): 1165–66. http://dx.doi.org/10.1016/s0379-6779(97)80197-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Bahari, Masoud, und Mir Vahid Hosseini. „Topological properties of a generalized spin–orbit-coupled Su–Schrieffer–Heeger model“. Physica E: Low-dimensional Systems and Nanostructures 119 (Mai 2020): 113973. http://dx.doi.org/10.1016/j.physe.2020.113973.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Voo, Khee-Kyun, und Chung-Yu Mou. „Phases and density of states in a generalized Su–Schrieffer–Heeger model“. Physica B: Condensed Matter 344, Nr. 1-4 (Februar 2004): 224–30. http://dx.doi.org/10.1016/j.physb.2003.09.262.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Fu, Rouli, Zhigang Shuai, Jie Liu, Xin Sun und J. Charles Hicks. „Bound states trapped by the soliton in the Su-Schrieffer-Heeger model“. Physical Review B 38, Nr. 9 (15.09.1988): 6298–300. http://dx.doi.org/10.1103/physrevb.38.6298.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Li, Chun-Fang, Li-Na Luan und Lin-Cheng Wang. „Topological Properties of an Extend Su-Schrieffer-Heeger Model Under Periodic Kickings“. International Journal of Theoretical Physics 59, Nr. 9 (18.07.2020): 2852–66. http://dx.doi.org/10.1007/s10773-020-04545-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Bocharov, A. A. „Topological edge solitons in the non-Hermitian nonlinear Su-Schrieffer-Heeger model“. Chaos, Solitons & Fractals 172 (Juli 2023): 113545. http://dx.doi.org/10.1016/j.chaos.2023.113545.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Yu, Z., H. Lin, R. Zhou, Z. Li, Z. Mao, K. Peng, Y. Liu und X. Shi. „Topological valley crystals in a photonic Su–Schrieffer–Heeger (SSH) variant“. Journal of Applied Physics 132, Nr. 16 (28.10.2022): 163101. http://dx.doi.org/10.1063/5.0107211.

Der volle Inhalt der Quelle
Annotation:
Progress on two-dimensional materials has shown that valleys, as energy extrema in a hexagonal first Brillouin zone, provide a new degree of freedom for information manipulation. Then, valley Hall topological insulators supporting such-polarized edge states on boundaries were set up accordingly. In this paper, a two-dimensional valley crystal composed of six tunable dielectric triangular pillars in each unit cell is proposed in the photonic sense of a deformed Su–Schrieffer–Heeger model. We reveal the vortex nature of valley states and establish the selection rules for valley-polarized states. Based on the valley topology, a rhombus-shaped beam splitter waveguide is designed to verify the valley-chirality selection rule above. Our numerical results entail that this topologically protected edge states still maintain robust transmission at sharp corners, thus providing a feasible idea for valley photonic devices in the THz regime.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Liu, Shuo, Wenlong Gao, Qian Zhang, Shaojie Ma, Lei Zhang, Changxu Liu, Yuan Jiang Xiang, Tie Jun Cui und Shuang Zhang. „Topologically Protected Edge State in Two-Dimensional Su–Schrieffer–Heeger Circuit“. Research 2019 (05.02.2019): 1–8. http://dx.doi.org/10.34133/2019/8609875.

Der volle Inhalt der Quelle
Annotation:
Topological circuits, an exciting field just emerged over the last two years, have become a very accessible platform for realizing and exploring topological physics, with many of their physical phenomena and potential applications as yet to be discovered. In this work, we design and experimentally demonstrate a topologically nontrivial band structure and the associated topologically protected edge states in an RF circuit, which is composed of a collection of grounded capacitors connected by alternating inductors in the x and y directions, in analogy to the Su–Schrieffer–Heeger model. We take full control of the topological invariant (i.e., Zak phase) as well as the gap width of the band structure by simply tuning the circuit parameters. Excellent agreement is found between the experimental and simulation results, both showing obvious nontrivial edge state that is tightly bound to the circuit boundaries with extreme robustness against various types of defects. The demonstration of topological properties in circuits provides a convenient and flexible platform for studying topological materials and the possibility for developing flexible circuits with highly robust circuit performance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Liu, Shuo, Wenlong Gao, Qian Zhang, Shaojie Ma, Lei Zhang, Changxu Liu, Yuan Jiang Xiang, Tie Jun Cui und Shuang Zhang. „Topologically Protected Edge State in Two-Dimensional Su–Schrieffer–Heeger Circuit“. Research 2019 (05.02.2019): 1–8. http://dx.doi.org/10.1155/2019/8609875.

Der volle Inhalt der Quelle
Annotation:
Topological circuits, an exciting field just emerged over the last two years, have become a very accessible platform for realizing and exploring topological physics, with many of their physical phenomena and potential applications as yet to be discovered. In this work, we design and experimentally demonstrate a topologically nontrivial band structure and the associated topologically protected edge states in an RF circuit, which is composed of a collection of grounded capacitors connected by alternating inductors in the x and y directions, in analogy to the Su–Schrieffer–Heeger model. We take full control of the topological invariant (i.e., Zak phase) as well as the gap width of the band structure by simply tuning the circuit parameters. Excellent agreement is found between the experimental and simulation results, both showing obvious nontrivial edge state that is tightly bound to the circuit boundaries with extreme robustness against various types of defects. The demonstration of topological properties in circuits provides a convenient and flexible platform for studying topological materials and the possibility for developing flexible circuits with highly robust circuit performance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Tusnin, A. K., A. M. Tikan und T. J. Kippenberg. „Dissipative Kerr solitons at the edge state of the Su-Schrieffer—Heeger model“. Journal of Physics: Conference Series 2015, Nr. 1 (01.11.2021): 012159. http://dx.doi.org/10.1088/1742-6596/2015/1/012159.

Der volle Inhalt der Quelle
Annotation:
Abstract We investigate analytically and numerically dynamics of dissipative Kerr solitons (DKS) at the edge state of the Su-Schrieffer–Heeger model. We demonstrate that four-wave mixing processes can lead to the formation of DKSs in the edge state of the resonator chain which subsequently initiates photon transfer to the bulk states. We discuss how the edge state soliton can be stabilized by limiting its width within the band gap. Our results contribute to advanced dispersion engineering via mode hybridization in chains of resonators — one of promising ways to achieve broadband frequency combs generation on chip.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Rappoport, Tatiana G., Yuliy V. Bludov, Frank H. L. Koppens und Nuno M. R. Peres. „Topological Graphene Plasmons in a Plasmonic Realization of the Su–Schrieffer–Heeger Model“. ACS Photonics 8, Nr. 6 (24.05.2021): 1817–23. http://dx.doi.org/10.1021/acsphotonics.1c00417.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Shirasaki, Ryōen, und Yasushi Wada. „New Electronic States Localized at a Soliton in the Su-Schrieffer-Heeger Model“. Journal of the Physical Society of Japan 59, Nr. 8 (15.08.1990): 2856–64. http://dx.doi.org/10.1143/jpsj.59.2856.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Marinček, Sara Pia, Jernej Mravlje und Tomaž Rejec. „Slow Quenches in the Band Insulator Described by the Su–Schrieffer–Heeger Model“. physica status solidi (b) 257, Nr. 5 (12.12.2019): 1900425. http://dx.doi.org/10.1002/pssb.201900425.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

DE CARVALHO, C. ARAGÃO. „ON THE DIMERIZATION OF LINEAR POLYMERS“. Modern Physics Letters B 03, Nr. 02 (Februar 1989): 125–33. http://dx.doi.org/10.1142/s0217984989000224.

Der volle Inhalt der Quelle
Annotation:
We use the continuum limit of the Su-Schrieffer-Heeger model for linear polymers to construct its effective potential (Gibbs free energy) both at zero and finite temperature. We study both trans and cis-polymers. Our results show that, depending on a renormalization condition to be extracted from experiment, there are several possibilities for the minima of the dimerized ground state of cis-polymers. All calculations are done in the one-loop approximation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Schobert, Arne, Jan Berges, Tim Wehling und Erik van Loon. „Downfolding the Su-Schrieffer-Heeger model“. SciPost Physics 11, Nr. 4 (20.10.2021). http://dx.doi.org/10.21468/scipostphys.11.4.079.

Der volle Inhalt der Quelle
Annotation:
Charge-density waves are responsible for symmetry-breaking displacements of atoms and concomitant changes in the electronic structure. Linear response theories, in particular density-functional perturbation theory, provide a way to study the effect of displacements on both the total energy and the electronic structure based on a single ab initio calculation. In downfolding approaches, the electronic system is reduced to a smaller number of bands, allowing for the incorporation of additional correlation and environmental effects on these bands. However, the physical contents of this downfolded model and its potential limitations are not always obvious. Here, we study the potential-energy landscape and electronic structure of the Su-Schrieffer-Heeger (SSH) model, where all relevant quantities can be evaluated analytically. We compare the exact results at arbitrary displacement with diagrammatic perturbation theory both in the full model and in a downfolded effective single-band model, which gives an instructive insight into the properties of downfolding. An exact reconstruction of the potential-energy landscape is possible in a downfolded model, which requires a dynamical electron-biphonon interaction. The dispersion of the bands upon atomic displacement is also found correctly, where the downfolded model by construction only captures spectral weight in the target space. In the SSH model, the electron-phonon coupling mechanism involves exclusively hybridization between the low- and high-energy bands and this limits the computational efficiency gain of downfolded models.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Coutant, Antonin, Audrey Sivadon, Liyang Zheng, Vassos Achilleos, Olivier Richoux, Georgios Theocharis und Vincent Pagneux. „Acoustic Su-Schrieffer-Heeger lattice: Direct mapping of acoustic waveguides to the Su-Schrieffer-Heeger model“. Physical Review B 103, Nr. 22 (23.06.2021). http://dx.doi.org/10.1103/physrevb.103.224309.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Li, Yu-Hang, und Ran Cheng. „Magnonic Su-Schrieffer-Heeger model in honeycomb ferromagnets“. Physical Review B 103, Nr. 1 (06.01.2021). http://dx.doi.org/10.1103/physrevb.103.014407.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Ye, Bing-Tian, Liang-Zhu Mu und Heng Fan. „Entanglement spectrum of Su-Schrieffer-Heeger-Hubbard model“. Physical Review B 94, Nr. 16 (26.10.2016). http://dx.doi.org/10.1103/physrevb.94.165167.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Zoli, Marco. „Mass renormalization in the Su-Schrieffer-Heeger model“. Physical Review B 66, Nr. 1 (16.07.2002). http://dx.doi.org/10.1103/physrevb.66.012303.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Jin, Tony, Paola Ruggiero und Thierry Giamarchi. „Bosonization of the interacting Su-Schrieffer-Heeger model“. Physical Review B 107, Nr. 20 (17.05.2023). http://dx.doi.org/10.1103/physrevb.107.l201111.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

„Dynamical phase diagram of Su-Schrieffer-Heeger model“. Iranian Journal of Physics Research 22, Nr. 2 (01.09.2022). http://dx.doi.org/10.47176/ijpr.22.2.11394.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Gorlach, M. A., und A. P. Slobozhanyuk. „Nonlinear topological states in the Su–Schrieffer–Heeger model“. Nanosystems: Physics, Chemistry, Mathematics, 26.12.2017, 695–700. http://dx.doi.org/10.17586/2220-8054-2017-8-6-695-700.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Obana, Daichi, Feng Liu und Katsunori Wakabayashi. „Topological edge states in the Su-Schrieffer-Heeger model“. Physical Review B 100, Nr. 7 (29.08.2019). http://dx.doi.org/10.1103/physrevb.100.075437.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Xie, Dizhou, Wei Gou, Teng Xiao, Bryce Gadway und Bo Yan. „Topological characterizations of an extended Su–Schrieffer–Heeger model“. npj Quantum Information 5, Nr. 1 (30.05.2019). http://dx.doi.org/10.1038/s41534-019-0159-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Di Liberto, M., A. Recati, I. Carusotto und C. Menotti. „Two-body physics in the Su-Schrieffer-Heeger model“. Physical Review A 94, Nr. 6 (22.12.2016). http://dx.doi.org/10.1103/physreva.94.062704.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Fomichev, Stepan, und Mona Berciu. „Renormalized phonon spectrum in the Su-Schrieffer-Heeger model“. Journal of Physics: Materials, 19.05.2023. http://dx.doi.org/10.1088/2515-7639/acd723.

Der volle Inhalt der Quelle
Annotation:
Abstract Motivated to understand phonon spectrum renormalization in the ground state of the half-filled Su-Schrieffer-Heeger model, we use the Born-Oppenheimer approximation together with the harmonic approximation to evaluate semi-analytically the all-to-all real-space ionic force constants generated through both linear and quadratic electron-phonon coupling. We then compute the renormalized phonon spectrum and the corresponding lattice zero-point energy as a function of the lattice dimerization. Crucially, the latter is included in the system's total energy, and thus has a direct effect on the equilibrium dimerization. We find that inclusion of a small quadratic coupling leads to very significant changes in the predicted equilibrium dimerization, calling into question the use of the linear approximation for this model. We also argue that inclusion of the zero-point energy is key for systems with comparable lattice and electronic energies, and/or for finite size chains. Our method can be straightforwardly generalized to study similar problems in higher dimensions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

van Niekerk, Chani Stella, und Robert Warmbier. „Characterization of the 2D Su‐Schrieffer‐Heeger Model with Second‐Nearest‐Neighbor Interactions“. physica status solidi (b), 08.11.2023. http://dx.doi.org/10.1002/pssb.202300241.

Der volle Inhalt der Quelle
Annotation:
It is known that a two dimensional dimerized Su‐Schrieffer‐Heeger model can produce a non‐trivial topological phase. It is a simple nearest‐neighbor model with four lattice sites in two dimensions. The Su‐Schrieffer‐Heeger model is easy to analyse but neglects important interaction in physical systems. In this work, an extended version of this model is proposed which includes all possible second nearest neighbor interactions in order to grant more flexibility when describing realistic systems. The addition of these interactions change the symmetry of the model and as a result affect the topological properties. In order to characterize the topological changes to the model, a polarization invariant is used. It is further shown that these symmetry breaking interactions can be used to evoke a topological phase transition as well.This article is protected by copyright. All rights reserved.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Chen, M. N., X. J. Yu und Z. Li. „Emergent Long-lived Zitterbewegung in Su–Schrieffer–Heeger Lattice with Third-nearest-neighbor Hopping“. JETP Letters, 15.05.2023. http://dx.doi.org/10.1134/s0021364023600386.

Der volle Inhalt der Quelle
Annotation:
We investigate the wavepacket dynamics of quasiparticles in a Su–Schrieffer–Heeger lattice with third-nearest-neighb or hopping. The results reveal that the life-span of Zitterbewegung can be prolonged. To better understand the mechanism, we discuss the band structure and the long-time average of inverse participation rate. The results show that the band structure can be effectively manipulated as a quasi-flat band by introducing the third-nearest-neighb or hopping. This, as a unique advantage over the standard Su–Schrieffer–Heeger model, will bring about restrained diffusion of the wavepacket as well as dramatically stretched life-span of Zitterbewegung, thus will promise wide applications in condensed matter physics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Cai, Xun, Zi-Xiang Li und Hong Yao. „Robustness of antiferromagnetism in the Su-Schrieffer-Heeger Hubbard model“. Physical Review B 106, Nr. 8 (18.08.2022). http://dx.doi.org/10.1103/physrevb.106.l081115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Anastasiadis, Adamantios, Georgios Styliaris, Rajesh Chaunsali, Georgios Theocharis und Fotios K. Diakonos. „Bulk-edge correspondence in the trimer Su-Schrieffer-Heeger model“. Physical Review B 106, Nr. 8 (05.08.2022). http://dx.doi.org/10.1103/physrevb.106.085109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie