Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Su-Schrieffer-Heeger model“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Su-Schrieffer-Heeger model" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Su-Schrieffer-Heeger model"
Zoli, Marco. „Spectral properties of the Su–Schrieffer–Heeger model“. Solid State Communications 122, Nr. 10 (Juni 2002): 531–35. http://dx.doi.org/10.1016/s0038-1098(02)00183-7.
Der volle Inhalt der QuelleZoli, Marco. „Thermodynamics of a continuum Su–Schrieffer–Heeger model“. Physica B: Condensed Matter 344, Nr. 1-4 (Februar 2004): 372–78. http://dx.doi.org/10.1016/j.physb.2003.10.015.
Der volle Inhalt der QuelleZoli, Marco. „Dimensionality effects on the Su–Schrieffer–Heeger model“. Physica C: Superconductivity 384, Nr. 3 (Februar 2003): 274–82. http://dx.doi.org/10.1016/s0921-4534(02)01883-x.
Der volle Inhalt der QuelleZOLI, M. „Polaronic features in the Su?Schrieffer?Heeger model“. Physica B: Condensed Matter 329-333 (Mai 2003): 1554–55. http://dx.doi.org/10.1016/s0921-4526(02)02292-5.
Der volle Inhalt der QuelleOztas, Z., und N. Candemir. „Su-Schrieffer-Heeger model with imaginary gauge field“. Physics Letters A 383, Nr. 15 (Mai 2019): 1821–24. http://dx.doi.org/10.1016/j.physleta.2019.02.037.
Der volle Inhalt der QuelleKwapisz, Jan H., und Leszek Z. Stolarczyk. „Applications of Hückel-Su-Schrieffer-Heeger method“. Structural Chemistry 32, Nr. 4 (11.05.2021): 1393–406. http://dx.doi.org/10.1007/s11224-021-01782-2.
Der volle Inhalt der QuelleJin, Kyung-Hwan, und Feng Liu. „1D topological phases in transition-metal monochalcogenide nanowires“. Nanoscale 12, Nr. 27 (2020): 14661–67. http://dx.doi.org/10.1039/d0nr03529g.
Der volle Inhalt der QuelleYahyavi, M., L. Saleem und B. Hetényi. „Variational study of the interacting, spinless Su–Schrieffer–Heeger model“. Journal of Physics: Condensed Matter 30, Nr. 44 (11.10.2018): 445602. http://dx.doi.org/10.1088/1361-648x/aae0a4.
Der volle Inhalt der QuelleVos, Fernando L. J., Daniel P. Aalberts und Wim van Saarloos. „Su-Schrieffer-Heeger model applied to chains of finite length“. Physical Review B 53, Nr. 22 (01.06.1996): 14922–28. http://dx.doi.org/10.1103/physrevb.53.14922.
Der volle Inhalt der QuelleMichielsen, Kristel, und Hans De Raedt. „Quantum molecular dynamics study of the Su-Schrieffer-Heeger model“. Zeitschrift für Physik B Condensed Matter 103, Nr. 3 (April 1997): 391–400. http://dx.doi.org/10.1007/s002570050393.
Der volle Inhalt der QuelleDissertationen zum Thema "Su-Schrieffer-Heeger model"
Allard, Thomas. „Disorder and topology in strongly coupled light-matter systems“. Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAE031.
Der volle Inhalt der QuelleThis thesis explores theoretically the fate of Anderson localization, as well as of topological phases of matter, in the strong light-matter coupling regime. We analyze the properties of one-dimensional systems made of dipolar emitters strongly-coupled to a multimode optical cavity. By studying a disordered chain of emitters, we find notably that, in the strong-coupling regime, increasing disorder leads almost uncoupled dark states to acquire a photonic part, allowing them to inherit polaritonic long-range transport characteristics. Investigating a dimerized chain of emitters, we study a variation of the Su-Schrieffer-Heeger model of polyacetylene, with the addition of an effective, cavity-induced, dipole-dipole coupling. We unveil the hybridization of the original topological edge states into polaritonic edge states that present unusual properties, such as efficient edge-to-edge transport characteristics
Hultell, (Andersson) Magnus. „Electron-Lattice Dynamics in pi-Conjugated Systems“. Licentiate thesis, Linköping University, Linköping University, Department of Physics, Chemistry and Biology, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7996.
Der volle Inhalt der QuelleIn this thesis we explore in particular the dynamics of a special type of quasi-particle in pi-conjugated materials termed polaron, the origin of which is intimately related to the strong interactions between the electronic and the vibrational degrees of freedom within these systems. In order to conduct such studies with the particular focus of each appended paper, we simultaneously solve the time-dependent Schrödinger equation and the lattice equation of motion with a three-dimensional extension of the famous Su-Schrieffer-Heeger (SSH) model Hamiltonian. In particular, we demonstrate in Paper I the applicability of the method to model transport dynamics in molecular crystals in a region were neither band theory nor perturbative treatments such as the Holstein model and extended Marcus theory apply. In Paper II we expand the model Hamiltonian to treat the revolution of phenylene rings around the sigma-bonds and demonstrate the great impact of stochastic ring torsion on the intra-chain mobility in conjugated polymers using poly[phenylene vinylene] (PPV) as a model system. Finally, in Paper III we go beyond the original purpose of the methodology and utilize its great flexibility to study radiationless relaxations of hot excitons.
Report code: LiU-TEK-LIC-2007:4.
Buchteile zum Thema "Su-Schrieffer-Heeger model"
Asbóth, János K., László Oroszlány und András Pályi. „The Su-Schrieffer-Heeger (SSH) Model“. In A Short Course on Topological Insulators, 1–22. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25607-8_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Su-Schrieffer-Heeger model"
Tusnin, Aleksandr, Xinru Ji, Anton Stroganov, Alexey Tikan und Tobias J. Kippenberg. „Edge state optical frequency combs in the microresonator based Su-Schrieffer-Heeger model“. In CLEO: Fundamental Science. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_fs.2023.fm1b.7.
Der volle Inhalt der QuelleTusnin, Aleksandr, Xinru Ji, Johann Riemensberger, Anton Stroganov, Alexey Tikan und Tobias J. Kippenberg. „Edge State Optical Frequency Combs in the Microresonator Based Su-Schrieffer- Heeger model“. In 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2023. http://dx.doi.org/10.1109/cleo/europe-eqec57999.2023.10232755.
Der volle Inhalt der QuelleRajabpoor Alisepahi, Amir, und Jihong Ma. „Boundary effect on in-gap edge states in nonlocal Su-Schrieffer-Heeger model“. In Health Monitoring of Structural and Biological Systems XVIII, herausgegeben von Piervincenzo Rizzo, Zhongqing Su, Fabrizio Ricci und Kara J. Peters. SPIE, 2024. http://dx.doi.org/10.1117/12.3010537.
Der volle Inhalt der QuelleSaxena, Abhi, Yueyang Chen, Zhuoran Fang und Arka Majumdar. „Photonic Topological Baths for Quantum Simulation“. In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sf3g.5.
Der volle Inhalt der QuelleSohn, Byoung-Uk, Yue-Xin Huang, Ju Won Choi, George F. R. Chen, Doris K. T. Ng, Shengyuan A. Yang und Dawn T. H. Tan. „A topological optical parametric amplifier on a CMOS-chip“. In Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/nlo.2023.w2a.3.
Der volle Inhalt der QuelleWang, Ziteng, Domenico Bongiovanni, Zhichan Hu, Xiangdong Wang, Ruoqi Cheng, Daohong Song, Roberto Morandotti, Hrvoje Buljan und Zhigang Chen. „Inherited topological edge states in photonic trimer lattices“. In CLEO: Fundamental Science. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_fs.2023.fm1b.4.
Der volle Inhalt der QuelleBongiovanni, Domenico, Zhichan Hu, Ziteng Wang, Xiangdong Wang, Yahui Zhang, Dario Jukić, Yi Hu et al. „Demonstration of Orbital Corner States in Higher-order Photonic Topological Insulators“. In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ftu1b.2.
Der volle Inhalt der QuelleViedma, David, Anselmo M. Marques, Ricardo G. Dias und Verònica Ahufinger. „n-Root of the Su-Schrieffer-Heeger Model on a Photonic Ring Resonator Lattice“. In 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2023. http://dx.doi.org/10.1109/cleo/europe-eqec57999.2023.10232618.
Der volle Inhalt der QuelleWang, Yu, Donghao Yang, Shaohua Gao, Xinzheng Zhang, Irena Drevensek-Olenik, Qiang Wu, Marouen Chemingui, Zhigang Chen und Jingjun Xu. „Visible Topological Lasing Based on a Polymer-cholesteric Liquid Crystal Superlattice“. In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jw3b.63.
Der volle Inhalt der QuelleLienhard, Vincent, Sylvain de Léséleuc, Pascal Scholl, Daniel Barredo, Thierry Lahaye und Antoine Browaeys. „Experimental realization of a bosonic version of the Su-Schrieffer-Heeger (SSH) model with Rydberg atoms“. In Quantum Information and Measurement. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/qim.2019.f4b.2.
Der volle Inhalt der Quelle