Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Structures lattices“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Structures lattices" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Structures lattices"
Majari, Parisa, Daniel Olvera-Trejo, Jorge A. Estrada-Díaz, Alex Elías-Zúñiga, Oscar Martinez-Romero, Claudia A. Ramírez-Herrera und Imperio Anel Perales-Martínez. „Enhanced Lightweight Structures Through Brachistochrone-Inspired Lattice Design“. Polymers 17, Nr. 5 (28.02.2025): 654. https://doi.org/10.3390/polym17050654.
Der volle Inhalt der QuelleMaskery, Ian, Alexandra Hussey, Ajit Panesar, Adedeji Aremu, Christopher Tuck, Ian Ashcroft und Richard Hague. „An investigation into reinforced and functionally graded lattice structures“. Journal of Cellular Plastics 53, Nr. 2 (28.07.2016): 151–65. http://dx.doi.org/10.1177/0021955x16639035.
Der volle Inhalt der QuelleHorváth, Eszter K., Sándor Radeleczki, Branimir Šešelja und Andreja Tepavčević. „A Note on Cuts of Lattice-Valued Functions and Concept Lattices“. Mathematica Slovaca 73, Nr. 3 (01.06.2023): 583–94. http://dx.doi.org/10.1515/ms-2023-0043.
Der volle Inhalt der QuelleEl-Gayar, Mostafa A., und Radwan Abu-Gdairi. „Extension of topological structures using lattices and rough sets“. AIMS Mathematics 9, Nr. 3 (2024): 7552–69. http://dx.doi.org/10.3934/math.2024366.
Der volle Inhalt der QuelleShatabda, Swakkhar, M. A. Hakim Newton, Mahmood A. Rashid, Duc Nghia Pham und Abdul Sattar. „How Good Are Simplified Models for Protein Structure Prediction?“ Advances in Bioinformatics 2014 (29.04.2014): 1–9. http://dx.doi.org/10.1155/2014/867179.
Der volle Inhalt der QuelleGrabowski, Adam. „Stone Lattices“. Formalized Mathematics 23, Nr. 4 (01.12.2015): 387–96. http://dx.doi.org/10.1515/forma-2015-0031.
Der volle Inhalt der QuellePan, Chen, Yafeng Han und Jiping Lu. „Design and Optimization of Lattice Structures: A Review“. Applied Sciences 10, Nr. 18 (13.09.2020): 6374. http://dx.doi.org/10.3390/app10186374.
Der volle Inhalt der QuelleLan, Tian, Chenxi Peng, Kate Fox, Truong Do und Phuong Tran. „Triply periodic minimal surfaces lattice structures: Functional graded and hybrid designs for engineering applications“. Materials Science in Additive Manufacturing 2, Nr. 3 (27.09.2023): 1753. http://dx.doi.org/10.36922/msam.1753.
Der volle Inhalt der QuelleLiu, Tinghao, und Guangbo Hao. „Design of Deployable Structures by Using Bistable Compliant Mechanisms“. Micromachines 13, Nr. 5 (19.04.2022): 651. http://dx.doi.org/10.3390/mi13050651.
Der volle Inhalt der QuelleFlaut, Cristina, Dana Piciu und Bianca Liana Bercea. „Some Applications of Fuzzy Sets in Residuated Lattices“. Axioms 13, Nr. 4 (18.04.2024): 267. http://dx.doi.org/10.3390/axioms13040267.
Der volle Inhalt der QuelleDissertationen zum Thema "Structures lattices"
Galvin, Brian Russell. „Numerical studies of localized vibrating structures in nonlinear lattices“. Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28408.
Der volle Inhalt der QuelleZhang, Botao. „Design of Variable-Density Structures for Additive Manufacturing Using Gyroid Lattices“. University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535374427634743.
Der volle Inhalt der QuelleBrown, Stephen A. „The response of polyhedra in close packed structures to temperature and pressure“. Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-11102009-020124/.
Der volle Inhalt der QuelleDamon, François. „Sonder des structures complexes avec des ondes de matière“. Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30342/document.
Der volle Inhalt der QuelleThis thesis presents the studies that I did at the Laboratoire de Physique Théorique. It concerns the interaction between matter waves and time and space depandant optical lattices. Using such lattices allows one to manipulate coherently the dynamical properties of ultra cold atoms. This theoretical study has been done in collaboration with the Cold Atoms group at the LCAR laboratory. The spatial variations of the lattice envelope locally create spatial gaps which create a Bragg cavity for matter waves. We have st udied in detail their properties and the cavity has been realized experimentally by using a Ru bid ium 85 Bose-Einstein condensate in a wave guide. We have also studied the propagation of an atomic cloud in a bichromatic optical lattice which allows us to make a quantum simulator of the Harper madel. The spectrum of the system Hamiltonian· posseses a fractal dimension which can be numerically characterized. We have also shawn that it is possible to use the repulsive interatomic interaction of a Bose-Einstein condensate in arder to amplify the momentum-position correlation during propagation in a guide. Our st udy shows that a mesure of local dynamical quantities of the atomic cloud enables one to experimentally probe resonances of an optical potential down to the picoKelvin scale. At last, an atomic cloud with attractive interactions admit a stable solution, the soliton. We have numerically demonstrated that this soliton can be used to probe bound states of a potential by populating those states through a scattering experiment, for example surface states
Reid, Robert. „Propagation and period-doubling of coherent structures in coupled lattice maps“. Thesis, University of Warwick, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369417.
Der volle Inhalt der QuelleLeo, James Lewis. „The transport properties of semiconductor super-lattices and multiple quantum well structures“. Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47153.
Der volle Inhalt der QuelleHolder, Jonathan Paul. „Resonant tunnelling spectroscopy of vertical GaAs/AlGaAs structures“. Thesis, University of Exeter, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312281.
Der volle Inhalt der QuelleStay, Justin L. „Multi-beam-interference-based methodology for the fabrication of photonic crystal structures“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31783.
Der volle Inhalt der QuelleCommittee Chair: Thomas K. Gaylord; Committee Member: Donald D. Davis; Committee Member: Gee-Kung Chang; Committee Member: Muhannad S. Bakir; Committee Member: Phillip N. First. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Refai, Khalil. „Effet de la méso-architecture sur le comportement en fatigue des structures lattices optimisées obtenues par fabrication additive“. Thesis, Paris, HESAM, 2020. http://www.theses.fr/2020HESAE028.
Der volle Inhalt der QuelleA numerical approach is proposed to assess the high cycle fatigue strength of periodic cellular structures produced by SLM under multiaxial loads. The model is based on a general numerical homogenisation scheme and an explicit description of the Elementary Cell combined to an extreme values analysis making use of a fatigue indicator parameter based on Crossland’s criterion. Also, geometric discrepancy and surface roughness are experimentally characterised and considered in the numerical model using three methods which are compared to the experimental fatigue strength. Topology optimisation (TO) pushes the boundaries of design freedom even further. In our study, Topology Optimisation was developed to prevent fatigue failure using SIMP method revisited and reformulated within the mathematical framework of Non-Uniform Rational BSpline functions
Chen, Li. „A quasicontinuum approach towards mechanical simulations of periodic lattice structures“. Doctoral thesis, Universite Libre de Bruxelles, 2020. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/314314.
Der volle Inhalt der QuelleDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Bücher zum Thema "Structures lattices"
Müller-Hoissen, Folkert, Jean Marcel Pallo und Jim Stasheff, Hrsg. Associahedra, Tamari Lattices and Related Structures. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0405-9.
Der volle Inhalt der QuelleFuentes, Benjamin J. Optical lattices: Structures, atoms, and solitons. Hauppauge, N.Y: Nova Science Publishers, 2012.
Den vollen Inhalt der Quelle findenGalvin, Brian Russell. Numerical studies of localized vibrating structures in nonlinear lattices. Monterey, Calif: Naval Postgraduate School, 1991.
Den vollen Inhalt der Quelle findenInternational Conference on Modulated Semiconductor Structures (3rd 1987 Montpellier, France). 3rd International Conference on Modulated Semiconductor Structures, 6-10 July 1987, Montpellier, France. Cedex: Editions de Physique, 1987.
Den vollen Inhalt der Quelle finden1956-, Strien Sebastian van, Verduyn Lunel S. M und Koninklijke Nederlandse Akademie van Wetenschappen. Afdeling Natuurkunde., Hrsg. Stochastic and spatial structures of dynamical systems: Proceedings of the colloquium, Amsterdam, 26-27 January 1995. Amsterdam: North-Holland, 1996.
Den vollen Inhalt der Quelle findenC, McGill T. Device Physics of Superlattices and Small Structures. Ft. Belvoir: Defense Technical Information Center, 1987.
Den vollen Inhalt der Quelle findenH, Sowa, Hrsg. Cubic structure types described in their space groups with the aid of frameworks. Karlsruhe, [West Germany]: Fachinformationszentrum Energie, Physik, Mathematik, 1985.
Den vollen Inhalt der Quelle findenLeung, Henry Hon Hung. Trellis structure and decoding of lattices. Ottawa: National Library of Canada, 1994.
Den vollen Inhalt der Quelle findenAmerican Society of Civil Engineers., Hrsg. Design of latticed steel transmission structures. Reston, Va: American Society of Civil Engineers, 2000.
Den vollen Inhalt der Quelle findenAmerican Society of Civil Engineers. Design of latticed steel transmission structures. Reston, Virginia: American Society of Civil Engineers, 2015.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Structures lattices"
Loeb, Arthur L. „Lattices and Lattice Complexes“. In Space Structures, 123–25. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0437-4_15.
Der volle Inhalt der QuelleMeyer-Nieberg, Peter. „Structures in Banach Lattices“. In Banach Lattices, 321–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76724-1_5.
Der volle Inhalt der QuelleLoeb, Arthur L. „Orthorhombic and Tetragonal Lattices“. In Space Structures, 139–46. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0437-4_18.
Der volle Inhalt der QuelleSenthil Kumar, B. V., und Hemen Dutta. „Lattices and Boolean Algebra“. In Discrete Mathematical Structures, 223–56. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020. | Series: Mathematics and its applications : modelling, engineering, and social sciences: CRC Press, 2019. http://dx.doi.org/10.1201/9780429053689-5.
Der volle Inhalt der QuelleEilbeck, J. C., und A. C. Scott. „Quantum Lattices“. In Nonlinear Coherent Structures in Physics and Biology, 1–14. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1343-2_1.
Der volle Inhalt der QuelleSuryanarayana, C., und M. Grant Norton. „Lattices and Crystal Structures“. In X-Ray Diffraction, 21–62. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_2.
Der volle Inhalt der QuelleCole, James A. „Non-distributive Cancellative Residuated Lattices“. In Ordered Algebraic Structures, 205–12. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3627-4_10.
Der volle Inhalt der QuelleJipsen, P., und C. Tsinakis. „A Survey of Residuated Lattices“. In Ordered Algebraic Structures, 19–56. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3627-4_3.
Der volle Inhalt der QuelleConrad, P. F., S. M. Lin und D. G. Nelson. „Torsion Classes of Vector Lattices“. In Ordered Algebraic Structures, 11–30. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1723-4_2.
Der volle Inhalt der QuelleTrubin, Alexander. „Antenna Structures on Lattices of“. In Lattices of Dielectric Resonators, 97–116. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25148-6_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Structures lattices"
Cheng, Dali, Eran Lustig, Kai Wang und Shanhui Fan. „Band structure measurements in multi-dimensional synthetic frequency lattices“. In CLEO: Fundamental Science, FTh4D.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth4d.6.
Der volle Inhalt der QuelleChen, Jiangce, Martha Baldwin, Sneha Narra und Christopher McComb. „Multi-Lattice Topology Optimization With Lattice Representation Learned by Generative Models“. In ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-145592.
Der volle Inhalt der QuelleToropova, Marina M., und Craig A. Steeves. „Thermal Actuation Through Bimaterial Lattices“. In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8855.
Der volle Inhalt der QuelleAyaz Uddin, Mohammed, Imad Barsoum, Shanmugam Kumar und Andreas Schiffer. „Enhancing Energy Absorption Capacity of Pyramidal Lattice Structures via Geometrical Tailoring and 3D Printing“. In ASME 2024 Aerospace Structures, Structural Dynamics, and Materials Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/ssdm2024-121512.
Der volle Inhalt der QuelleVenugopal, Vysakh, Matthew McConaha und Sam Anand. „Topology Optimization for Multi-Material Lattice Structures With Tailorable Material Properties for Additive Manufacturing“. In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2989.
Der volle Inhalt der QuelleHathcock, Megan, Bogdan Popa und Kon-Well Wang. „Continuous Dirac Cone Evolution in Modulated Phononic Crystal“. In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95839.
Der volle Inhalt der QuelleZhang, Botao, Kunal Mhapsekar und Sam Anand. „Design of Variable-Density Structures for Additive Manufacturing Using Gyroid Lattices“. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68047.
Der volle Inhalt der QuelleKapral, Raymond. „Discrete Dynamics of Spatio-Temporal Structures“. In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.is9.
Der volle Inhalt der QuelleMcConaha, Matthew, und Sam Anand. „Design of Stochastic Lattice Structures for Additive Manufacturing“. In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8439.
Der volle Inhalt der QuelleLishi Zhang, Yi Su und Xiaodong Liu. „AFS Structures and Concept Lattices“. In 2006 6th World Congress on Intelligent Control and Automation. IEEE, 2006. http://dx.doi.org/10.1109/wcica.2006.1712820.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Structures lattices"
Fry, A. T., L. E. Crocker, M. J. Lodeiro, M. Poole, P. Woolliams, A. Koko, N. Leung, D. England und C. Breheny. Tensile property measurement of lattice structures. National Physical Laboratory, Juli 2023. http://dx.doi.org/10.47120/npl.mat119.
Der volle Inhalt der QuelleWilliams, James H., und Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1987. http://dx.doi.org/10.21236/ada190037.
Der volle Inhalt der QuelleWilliams, James H., und Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1987. http://dx.doi.org/10.21236/ada190611.
Der volle Inhalt der QuelleWilliams, James H., und Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1985. http://dx.doi.org/10.21236/ada170316.
Der volle Inhalt der QuelleLiu, Keh-Fei, und Terrence Draper. Lattice QCD Calculation of Nucleon Structure. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1323029.
Der volle Inhalt der QuelleSkowronski, Marek, und D. W. Greve. Growth of Lattice Matched Nitride Alloys and Structures. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada354115.
Der volle Inhalt der QuelleBraun, D. W., G. W. Crabtree, H. G. Kaper, G. K. Leaf, D. M. Levine, V. M. Vinokur und A. E. Koshelev. The structure of a moving vortex lattice. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/179299.
Der volle Inhalt der QuelleParsa, Z., und S. Tepikian. Overview of the structure resonances in the AGS-Booster lattices. Office of Scientific and Technical Information (OSTI), Juni 1986. http://dx.doi.org/10.2172/1150423.
Der volle Inhalt der QuelleHughes, Nathan. Computed Tomography (CT) Analysis of 3D Printed Lattice Structures. Office of Scientific and Technical Information (OSTI), Mai 2023. http://dx.doi.org/10.2172/1975633.
Der volle Inhalt der QuelleWilliams, James H., Nagem Jr. und Raymond J. Computation of Natural Frequencies of Planar Lattice Structure. Fort Belvoir, VA: Defense Technical Information Center, März 1987. http://dx.doi.org/10.21236/ada185387.
Der volle Inhalt der Quelle