Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Structures“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Structures" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Structures"
Yamasaki, Satoshi, und Kazuhiko Fukui. „2P266 Tertiary structure prediction of RNA-RNA complex structures using secondary structure information(22A. Bioinformatics: Structural genomics,Poster)“. Seibutsu Butsuri 53, supplement1-2 (2013): S203. http://dx.doi.org/10.2142/biophys.53.s203_1.
Der volle Inhalt der QuelleJanoschek, Rudolf. „Structures, Structures, and Structures“. Angewandte Chemie International Edition in English 31, Nr. 3 (März 1992): 290–92. http://dx.doi.org/10.1002/anie.199202901.
Der volle Inhalt der QuelleSmith, Henry E. „Structured Settlements as Structures of Rights“. Virginia Law Review 88, Nr. 8 (Dezember 2002): 1953. http://dx.doi.org/10.2307/1074013.
Der volle Inhalt der QuelleHORNUNG, Martin, Takahisa DOBA, Rajat AGARWAL, Mark BUTLER und Olaf LAMMERSCHOP. „Structural Adhesives for Energy Management and Reinforcement of Body Structures“. Journal of The Adhesion Society of Japan 44, Nr. 7 (2008): 258–63. http://dx.doi.org/10.11618/adhesion.44.258.
Der volle Inhalt der QuelleIbrahim, M. K. „Radix-2nmultiplier structures: a structured design methodology“. IEE Proceedings E (Computers and Digital Techniques) 140, Nr. 4 (Juli 1993): 185–90. http://dx.doi.org/10.1049/ip-e.1993.0026.
Der volle Inhalt der QuelleElyiğit, Belkıs, und Cevdet Emin Ekinci. „A RESEARCH ON STRUCTURAL AND NON-STRUCTURAL DAMAGES AND DAMAGE ASSESSMENT IN REINFORCED CONCRETE STRUCTURES“. NWSA Academic Journals 18, Nr. 2 (25.04.2023): 19–42. http://dx.doi.org/10.12739/nwsa.2023.18.2.1a0485.
Der volle Inhalt der QuelleKhalaf, Mohammed M., und Ahmed Elmoasry. „ -WEAK STRUCTURES“. Indian Journal of Applied Research 4, Nr. 1 (01.10.2011): 351–55. http://dx.doi.org/10.15373/2249555x/jan2014/103.
Der volle Inhalt der QuelleZilberman, M., N. D. Schwade, R. S. Meidell und R. C. Eberhart. „Structured drug-loaded bioresorbable films for support structures“. Journal of Biomaterials Science, Polymer Edition 12, Nr. 8 (Januar 2001): 875–92. http://dx.doi.org/10.1163/156856201753113079.
Der volle Inhalt der QuelleKraus, Felix, Ezequiel Miron, Justin Demmerle, Tsotne Chitiashvili, Alexei Budco, Quentin Alle, Atsushi Matsuda, Heinrich Leonhardt, Lothar Schermelleh und Yolanda Markaki. „Quantitative 3D structured illumination microscopy of nuclear structures“. Nature Protocols 12, Nr. 5 (13.04.2017): 1011–28. http://dx.doi.org/10.1038/nprot.2017.020.
Der volle Inhalt der QuelleJie Chen, M. K. H. Fan und C. N. Nett. „Structured singular values with nondiagonal structures. I. Characterizations“. IEEE Transactions on Automatic Control 41, Nr. 10 (1996): 1507–11. http://dx.doi.org/10.1109/9.539434.
Der volle Inhalt der QuelleDissertationen zum Thema "Structures"
Guy, Nicolas. „Modèle et commande structurés : application aux grandes structures spatiales flexibles“. Thesis, Toulouse, ISAE, 2013. http://www.theses.fr/2013ESAE0036/document.
Der volle Inhalt der QuelleIn this thesis, modeling and robust attitude control problems of large flexible space structures are considered. To meet the required pointing performance of future space missions scenarios, we propose to directly optimize a reduced order control law on high order model validation and criteria that directly exploit the model structure. Thus, the work of this thesis is naturally divided into two parts : one part on obtaining a wisely structured dynamic model of the spacecraft to be used in the synthesis step, a second part about getting the law control. This work is illustrated on the example of the academic spring-masses system, which is the simplest representation of a one degree of freedom flexible system. In addition, a geostationary satellite study case is processed to validate developed approaches on a more realistic example of an industrial problem
Sibai, Munira. „Optimization of an Unfurlable Space Structure“. Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99908.
Der volle Inhalt der QuelleMaster of Science
Spacecraft, or artificial satellites, do not fly from earth to space on their own. They are launched into their orbits by placing them inside launch vehicles, also known as carrier rockets. Some parts or components of spacecraft are large and cannot fit in their designated space inside launch vehicles without being stowed into smaller volumes first. Examples of large components on spacecraft include solar arrays, which provide power to the spacecraft, and antennas, which are used on satellite for communication purposes. Many methods have been developed to stow such large components. Many of these methods involve folding about joints or hinges, whether it is done in a simple manner or by more complex designs. Moreover, components that are flexible enough could be rolled or wrapped before they are placed in launch vehicles. This method reduces the mass which the launch vehicle needs to carry, since added mass of joints is eliminated. Low mass is always desirable in space applications. Furthermore, wrapping is very effective at minimizing the volume of a component. These structures store energy inside them as they are wrapped due to the stiffness of their materials. This behavior is identical to that observed in a deformed spring. When the structures are released in space, that energy is released, and thus, they deploy and try to return to their original form. This is due to inertia, where the stored strain energy turns into kinetic energy as the structure deploys. The physical analysis of these structures, which enables their design, is complex and requires computational solutions and numerical modeling. The best design for a given problem can be found through numerical optimization. Numerical optimization uses mathematical approximations and computer programming to give the values of design parameters that would result in the best design based on specified criterion and goals. In this thesis, numerical optimization was conducted for a simple unfurlable structure. The structure consists of a thin rectangular panel that wraps tightly around a central cylinder. The cylinder and panel are connected with a hinge that is a rotational spring with some stiffness. The optimization was solved to obtain the best values for the stiffness of the hinge, the thickness of the panel, which is allowed to vary along its length, and the stiffness or elasticity of the panel's material. The goals or objective of the optimization was to ensure that the deployed panel meets stiffness requirement specified for similar space components. Those requirements are set to make certain that the spacecraft can be controlled from earth even with its large component deployed. Additionally, the second goal of the optimization was to guarantee that the unfurling panel does not have very high energy stored while it's wrapped, so that it would not cause large motion the connected spacecraft in the zero gravity environments of space. A computer simulation was run with the resulting hinge stiffness and panel elasticity and thickness values with the cylinder and four panels connected to a structure representing a spacecraft. The simulation results and deployment animation were assessed to confirm that desired results were achieved.
Keyhani, Ali. „A Study On The Predictive Optimal Active Control Of Civil Engineering Structures“. Thesis, Indian Institute of Science, 2000. https://etd.iisc.ac.in/handle/2005/223.
Der volle Inhalt der QuelleKeyhani, Ali. „A Study On The Predictive Optimal Active Control Of Civil Engineering Structures“. Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/223.
Der volle Inhalt der QuellePeters, David W. „Design of diffractive optical elements through low-dimensional optimization“. Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/54614.
Der volle Inhalt der QuellePlessas, Spyridon D. „Fluid-structure interaction in composite structures“. Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/41432.
Der volle Inhalt der QuelleIn this research, dynamic characteristics of polymer composite beam and plate structures were studied when the structures were in contact with water. The effect of fluid-structure interaction (FSI) on natural frequencies, mode shapes, and dynamic responses was examined for polymer composite structures using multiphysics-based computational techniques. Composite structures were modeled using the finite element method. The fluid was modeled as an acoustic medium using the cellular automata technique. Both techniques were coupled so that both fluid and structure could interact bi-directionally. In order to make the coupling easier, the beam and plate finite elements have only displacement degrees of freedom but no rotational degrees of freedom. The fast Fourier transform (FFT) technique was applied to the transient responses of the composite structures with and without FSI, respectively, so that the effect of FSI can be examined by comparing the two results. The study showed that the effect of FSI is significant on dynamic properties of polymer composite structures. Some previous experimental observations were confirmed using the results from the computer simulations, which also enhanced understanding the effect of FSI on dynamic responses of composite structures.
Carpentier, Mathilde. „Méthodes de détection des similarités structurales : caractérisation des motifs conservés dans les familles de structures pour l' annotation des génomes“. Paris 6, 2005. http://www.theses.fr/2005PA066571.
Der volle Inhalt der QuelleEdrees, Tarek. „Structural Identification of Civil Engineering Structures“. Licentiate thesis, Luleå tekniska universitet, Byggkonstruktion och -produktion, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26719.
Der volle Inhalt der QuelleGodkänd; 2014; 20141023 (taredr); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Tarek Edrees Saaed Ämne: Konstruktionsteknik/Structural Engineering Uppsats: Structural Identification of Civil Engineering Structures Examinator: Professor Jan-Erik Jonasson, Institutionen för samhällsbyggnad och naturresurser, Luleå tekniska universitet Diskutant: Forskare Andreas Andersson, Brobyggnad inklusive Stålbyggnad, Kungliga Tekniska Högskolan Tid: Torsdag den 20 november 2014 kl 10:00 Plats: F1031, Luleå tekniska universitet
BABAEI, IMAN. „Structural Testing of Composite Crash Structures“. Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2910072.
Der volle Inhalt der QuelleRasmussen, Kim J. R. „Stability of thin-walled structural members and systems“. Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/18194.
Der volle Inhalt der QuelleBücher zum Thema "Structures"
Baerlocher, C., J. M. Bennett, W. Depmeier, A. N. Fitch, H. Jobic, H. van Koningsveld, W. M. Meier, A. Pfenninger und O. Terasaki, Hrsg. Structures and Structure Determination. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-69749-7.
Der volle Inhalt der QuelleKwon, Young W. Fluid-Structure Interaction of Composite Structures. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57638-7.
Der volle Inhalt der QuelleBui, Tinh Quoc, Le Thanh Cuong und Samir Khatir, Hrsg. Structural Health Monitoring and Engineering Structures. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0945-9.
Der volle Inhalt der QuelleMoreira, Pedro M. G. P., Lucas F. M. da Silva und Paulo M. S. T. de Castro, Hrsg. Structural Connections for Lightweight Metallic Structures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-18187-0.
Der volle Inhalt der QuelleChamis, C. C. Computational structural mechanics for engine structures. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Den vollen Inhalt der Quelle findenM, Silva Lucas F., Castro, Paulo M.S.T. und SpringerLink (Online service), Hrsg. Structural Connections for Lightweight Metallic Structures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenMoore, Fuller. Understanding structures = Introduction to structural systems. Taipei: McGraw Hill, 2000.
Den vollen Inhalt der Quelle findenInternational Association for Shell and Spatial Structures, Hrsg. Structural design of retractable roof structures. Southampton: WIT, 2000.
Den vollen Inhalt der Quelle findenOrganisation for Economic Co-operation and Development., Hrsg. Industrial structure statistics =: Statistiques des structures industrielles. Paris: O.E.C.D., 1987.
Den vollen Inhalt der Quelle findenSchodek, Daniel L. Structures. 2. Aufl. Englewood Cliffs, N.J: Prentice-Hall, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Structures"
Kahle, Reinhard. „Structure and Structures“. In Boston Studies in the Philosophy and History of Science, 109–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93342-9_7.
Der volle Inhalt der QuelleHu, Hong-Song. „Peak Superstructure Responses of Single-Story Sliding Base Structures Under Earthquake Excitation“. In Sliding Base Structures, 45–65. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5107-9_4.
Der volle Inhalt der QuelleStimpfle, Bernd. „Structural Air — Pneumatic Structures“. In Textile Composites and Inflatable Structures II, 233–52. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6856-0_13.
Der volle Inhalt der QuelleWilliams, M. S., und J. D. Todd. „Introducing structures“. In Structures, 1–30. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_1.
Der volle Inhalt der QuelleWilliams, M. S., und J. D. Todd. „The finite element method“. In Structures, 286–314. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_10.
Der volle Inhalt der QuelleWilliams, M. S., und J. D. Todd. „Buckling and instability“. In Structures, 315–43. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_11.
Der volle Inhalt der QuelleWilliams, M. S., und J. D. Todd. „Plastic analysis of structures“. In Structures, 344–73. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_12.
Der volle Inhalt der QuelleWilliams, M. S., und J. D. Todd. „Structural dynamics“. In Structures, 374–409. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_13.
Der volle Inhalt der QuelleWilliams, M. S., und J. D. Todd. „Plane statics“. In Structures, 31–61. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_2.
Der volle Inhalt der QuelleWilliams, M. S., und J. D. Todd. „Statically determinate structures“. In Structures, 62–96. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Structures"
Downen, Paul, Philip Johnson-Freyd und Zena M. Ariola. „Structures for structural recursion“. In ICFP'15: 20th ACM SIGPLAN International Conference on Functional Programming. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2784731.2784762.
Der volle Inhalt der QuelleLee, Yong Kyu, Seong-Joon Yoo, Kyoungro Yoon und P. Bruce Berra. „Index structures for structured documents“. In the first ACM international conference. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/226931.226950.
Der volle Inhalt der QuelleWADA, BEN. „Adaptive structures“. In 30th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1160.
Der volle Inhalt der QuelleBruck, Hugh A. „Processing-Structure-Property Relationships in Hierarchically-Structured Polymer Composites for Multifunctional Structures“. In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59088.
Der volle Inhalt der QuelleLeutenegger, Tobias, Dirk H. Schlums und Jurg Dual. „Structural testing of fatigued structures“. In 1999 Symposium on Smart Structures and Materials, herausgegeben von Norman M. Wereley. SPIE, 1999. http://dx.doi.org/10.1117/12.350775.
Der volle Inhalt der QuelleWADA, BEN, und SENOL UTKU. „Adaptive structures for deployment/construction of structures in space“. In 33rd Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-2339.
Der volle Inhalt der QuelleTaron, Joshua. „Speculative Structures: Reanimating Latent Structural Intelligence in Agent-based Continuum Structures“. In eCAADe 2012 : Digital Physicality. eCAADe, 2012. http://dx.doi.org/10.52842/conf.ecaade.2012.1.365.
Der volle Inhalt der QuelleTaron, Joshua. „Speculative Structures: Reanimating Latent Structural Intelligence in Agent-based Continuum Structures“. In eCAADe 2012 : Digital Physicality. eCAADe, 2012. http://dx.doi.org/10.52842/conf.ecaade.2012.1.365.
Der volle Inhalt der QuelleNOOR, AHMED. „Computational structures technology“. In 33rd Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-2442.
Der volle Inhalt der Quelle„Structure/Flow Interaction in Inflatable Structures“. In 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.iac-04-u.3.a.06.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Structures"
Ebeling, Robert, und Barry White. Load and resistance factors for earth retaining, reinforced concrete hydraulic structures based on a reliability index (β) derived from the Probability of Unsatisfactory Performance (PUP) : phase 2 study. Engineer Research and Development Center (U.S.), März 2021. http://dx.doi.org/10.21079/11681/39881.
Der volle Inhalt der QuelleWeinstein Agrawal, Asha, Samuel Speroni, Michael Manville und Brian D. Taylor. Pay-As-You-Go Driving: Examining Possible Road-User Charge Rate Structures for California. Mineta Transporation Institute, Oktober 2023. http://dx.doi.org/10.31979/mti.2023.2149.
Der volle Inhalt der QuelleSullivan, Brian J., und Kent W. Buesking. Structural Integrity of Intelligent Materials and Structures. Fort Belvoir, VA: Defense Technical Information Center, Februar 1994. http://dx.doi.org/10.21236/ada280941.
Der volle Inhalt der QuelleFuller, Chris R. Active Structural Acoustic Control and Smart Structures. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada248341.
Der volle Inhalt der QuelleInman, Daniel J., Armaghan Salhian und Pablo Tarazaga. Structural Dynamics of Cable Harnessed Spacecraft Structures. Fort Belvoir, VA: Defense Technical Information Center, Juli 2013. http://dx.doi.org/10.21236/ada588127.
Der volle Inhalt der QuelleFernandez, Jasmine, Michaela Bonnett, Teri Garstka und Meaghan Kennedy. Exploring Social Care Network Structures. Orange Sparkle Ball, Juni 2024. http://dx.doi.org/10.61152/hdnz4028https://www.orangesparkleball.com/innovation-library-blog/2024/5/30/sunbelt2024-exploring-social-care-network-structures.
Der volle Inhalt der QuelleFernandez, Jasmine, Michaela Bonnett, Teri Garstka und Meaghan Kennedy. Exploring Social Care Network Structures. Orange Sparkle Ball, Juni 2024. http://dx.doi.org/10.61152/hdnz4028.
Der volle Inhalt der QuelleIssa, Mohsen A. Structural Evaluation Procedures for Heavy Wood Truss Structures. Fort Belvoir, VA: Defense Technical Information Center, Juli 1998. http://dx.doi.org/10.21236/ada362404.
Der volle Inhalt der QuelleAllen, J., und J. Lauffer. Integrated structural control design of large space structures. Office of Scientific and Technical Information (OSTI), Januar 1995. http://dx.doi.org/10.2172/10115453.
Der volle Inhalt der QuelleHadjipanayis, George, und Alexander Gabay. Electronic Structure and Spin Correlations in Novel Magnetic Structures. Office of Scientific and Technical Information (OSTI), Juni 2021. http://dx.doi.org/10.2172/1797990.
Der volle Inhalt der Quelle