Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Structured lattices“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Structured lattices" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Structured lattices"
Frascella, A., und C. Guido. „Structured lattices and ground categories ofL-sets“. International Journal of Mathematics and Mathematical Sciences 2005, Nr. 17 (2005): 2783–803. http://dx.doi.org/10.1155/ijmms.2005.2783.
Der volle Inhalt der QuelleBathla, Pranjal, und John Kennedy. „3D Printed Structured Porous Treatments for Flow Control around a Circular Cylinder“. Fluids 5, Nr. 3 (14.08.2020): 136. http://dx.doi.org/10.3390/fluids5030136.
Der volle Inhalt der QuelleHORE, VICTORIA R. A., JOHN B. TROY und STEPHEN J. EGLEN. „Parasol cell mosaics are unlikely to drive the formation of structured orientation maps in primary visual cortex“. Visual Neuroscience 29, Nr. 6 (30.10.2012): 283–99. http://dx.doi.org/10.1017/s0952523812000338.
Der volle Inhalt der QuelleBudinski, Ljubomir, Julius Fabian und Matija Stipić. „Lattice Boltzmann method for groundwater flow in non-orthogonal structured lattices“. Computers & Mathematics with Applications 70, Nr. 10 (November 2015): 2601–15. http://dx.doi.org/10.1016/j.camwa.2015.09.027.
Der volle Inhalt der QuelleKumar, K. Raj, und Giuseppe Caire. „Space–Time Codes From Structured Lattices“. IEEE Transactions on Information Theory 55, Nr. 2 (Februar 2009): 547–56. http://dx.doi.org/10.1109/tit.2008.2009595.
Der volle Inhalt der QuelleDziobiak, Wieslaw, Jaroslav Ježek und Ralph McKenzie. „Avoidable structures, II: Finite distributive lattices and nicely structured ordered sets“. Algebra universalis 60, Nr. 3 (16.03.2009): 259–91. http://dx.doi.org/10.1007/s00012-009-2098-0.
Der volle Inhalt der QuelleBoley, J. William, Wim M. van Rees, Charles Lissandrello, Mark N. Horenstein, Ryan L. Truby, Arda Kotikian, Jennifer A. Lewis und L. Mahadevan. „Shape-shifting structured lattices via multimaterial 4D printing“. Proceedings of the National Academy of Sciences 116, Nr. 42 (02.10.2019): 20856–62. http://dx.doi.org/10.1073/pnas.1908806116.
Der volle Inhalt der QuelleAnoop, V. S., und S. Asharaf. „Extracting Conceptual Relationships and Inducing Concept Lattices from Unstructured Text“. Journal of Intelligent Systems 28, Nr. 4 (25.09.2019): 669–81. http://dx.doi.org/10.1515/jisys-2017-0225.
Der volle Inhalt der QuelleKhoromskaia, Venera, und Boris N. Khoromskij. „Block Circulant and Toeplitz Structures in the Linearized Hartree–Fock Equation on Finite Lattices: Tensor Approach“. Computational Methods in Applied Mathematics 17, Nr. 3 (01.07.2017): 431–55. http://dx.doi.org/10.1515/cmam-2017-0004.
Der volle Inhalt der QuelleSTRACCIA, UMBERTO. „DESCRIPTION LOGICS OVER LATTICES“. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 14, Nr. 01 (Februar 2006): 1–16. http://dx.doi.org/10.1142/s0218488506003807.
Der volle Inhalt der QuelleDissertationen zum Thema "Structured lattices"
Felderhoff, Joël. „Difficultés de Problèmes de Réseaux Structurés pour la Cryptographie Post-Quantique“. Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0059.
Der volle Inhalt der QuelleThe security of cryptographic protocols is based on the presumed difficulty of algorithmic problems. Among those identified so far, some of the best problems to serve as a foundation for quantum-proof cryptography come from lattices. Lattices are a mathematical structure defined as a set of space vectors generated by integer combinations of a finite number of linearly independent real vectors (its basis). A typical example of a related security problem is the Shortest Vector Problem (SVP). Given a base of an n-dimensional lattice, find a non-zero short vector. For efficiency reasons, these problems are restricted to lattices arising from number theory, known as structured lattices. As the security assumptions for these particular lattices are different from those for unstructured lattices, it is necessary to study them specifically, which is the aim of this thesis.We have studied the case of NTRU and uSVP modules in rank 2, proving that the SVP problem is equivalent on these two families of lattices. We also show a worst-case to average-case reduction for rank-2 uSVP lattices. Then we show that solving SVP on a prime ideal of small norm is no easier than solving SVP on any ideal
ASHOK, RAMYA. „A DATABASE SYSTEM TO STORE AND RETRIEVE A CONCEPT LATTICE STRUCTURE“. University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1130552767.
Der volle Inhalt der QuelleJenkins, Sarah Nield Morrish. „Mechanical properties and structural evaluation of diamond structure Ti6Al4V lattices made by Electron Beam Melting“. Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/20954/.
Der volle Inhalt der QuelleBanihashemi, Amir H. „Decoding complexity and trellis structure of lattices“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22189.pdf.
Der volle Inhalt der QuelleBurns, D. „Factorisability, group lattices, and Galois module structure“. Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335599.
Der volle Inhalt der QuelleO'Connor, Joseph. „Fluid-structure interactions of wall-mounted flexible slender structures“. Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/fluidstructure-interactions-of-wallmounted-flexible-slender-structures(1dab2986-b78f-4ff9-9b2e-5d2181cfa009).html.
Der volle Inhalt der QuelleGoel, Archak. „Design of Functionally Graded BCC Type Lattice Structures Using B-spline Surfaces for Additive Manufacturing“. University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1552398559313737.
Der volle Inhalt der QuelleHou, An. „Strength of composite lattice structures“. Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/12475.
Der volle Inhalt der QuelleObiedat, Mohammad. „Incrementally Sorted Lattice Data Structures“. Thesis, The George Washington University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3732474.
Der volle Inhalt der QuelleData structures are vital entities that strongly impact the efficiency of several software applications. Compactness, predictable memory access patterns, and good temporal and spacial locality of the structure's operations are increasingly becoming essential factors in the selection of a data structure for a specific application. In general, the less data we store and move the better for efficiency and power consumption, especially in infrastructure software and applications for hand-held devices like smartphones. In this dissertation, we extensively study a data structure named lattice data structure (LDS) that is as compact and suitable for memory hierarchies as the array, yet with a rich structure that enables devising procedures with better time bounds.
To achieve performance similar to the performance of the optimal O(log(N)) time complexity of the searching operations of other structures, we provide a hybrid searching algorithm that can be implemented by searching the lattice using the basic searching algorithm when the degree of the sortedness of the lattice is less than or equal to 0.9h, and the jump searching algorithm when the degree of the sortedness of the lattice is greater than 0.9h. A sorting procedure that can be used, during the system idle time, to incrementally increase the degree of sortedness of the lattice is given. We also provide randomized and parallel searching algorithms that can be used instead of the usual jump-and-walk searching algorithms.
A lattice can be represented by a one-dimensional array, where each cell is represented by one array element. The worst case time complexity of the basic LDS operations and the average time complexity of some of the order-statistic operations are better than the corresponding time complexities of most of other data structures operations. This makes the LDS a good choice for memory-constrained systems, for systems where power consumption is a critical issue, and for real-time systems. A potential application of the LDS is to use it as an index structure for in-memory databases.
Kouach, Mona. „Methods for modelling lattice structures“. Thesis, KTH, Hållfasthetslära (Avd.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260498.
Der volle Inhalt der QuelleÖkad implementering av gitterstrukturer i komponenter är ett resultat av utvecklingen inom additiv tillverkning. Metoden öppnar upp för tillverkning av komplexa strukturer med färre delmoment. Dock så uppkommer det svårigheter vid simulering av dessa komplexa strukturer då beräkningar snabbt tyngs ner med ökad komplexitet. Följande examensarbete har utförts hos avdelningen Strukturanalys, på SAAB i Järfälla, för att de ska kunna möta upp det framtida behovet av beräkningar på additivt tillverkade gitterstrukturer. I det här arbetet presenteras ett tillvägagångsätt för modellering av gitterstrukturer med hjälp av represantiva volymselement. Styvhetsmatriser har räknats fram, för en vald gitterkonfiguration, som sedan viktats mot tre snarlika representativa volymselement. En jämförelseanalys mellan de olika styvhetsmatriserna har sedan gjorts på en större och solid modell för att se hur väl metoderna förutsett deformationen av en gitterstruktur i samma storlek. Resultaten har visat att samtliga metoder är bra approximationer med tämligen små skillnader från randeffekterna. Vid jämförelseanalysen simulerades gitterstrukturen bäst med två av de tre metoder. En av slutsatserna är att det är viktigt att förstå inverkan av randvillkoren hos gitterstrukturer innan implementering görs med det tillvägagångssätt som presenterats i det här examensarbetet.
Bücher zum Thema "Structured lattices"
H, Sowa, Hrsg. Cubic structure types described in their space groups with the aid of frameworks. Karlsruhe, [West Germany]: Fachinformationszentrum Energie, Physik, Mathematik, 1985.
Den vollen Inhalt der Quelle findenMüller-Hoissen, Folkert, Jean Marcel Pallo und Jim Stasheff, Hrsg. Associahedra, Tamari Lattices and Related Structures. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0405-9.
Der volle Inhalt der QuelleFuentes, Benjamin J. Optical lattices: Structures, atoms, and solitons. Hauppauge, N.Y: Nova Science Publishers, 2012.
Den vollen Inhalt der Quelle findenLeung, Henry Hon Hung. Trellis structure and decoding of lattices. Ottawa: National Library of Canada, 1994.
Den vollen Inhalt der Quelle findenAmerican Society of Civil Engineers., Hrsg. Design of latticed steel transmission structures. Reston, Va: American Society of Civil Engineers, 2000.
Den vollen Inhalt der Quelle findenAmerican Society of Civil Engineers. Design of latticed steel transmission structures. Reston, Virginia: American Society of Civil Engineers, 2015.
Den vollen Inhalt der Quelle findenZhu, K. Nonlinear dynamic analysis of lattice structures. Brisbane: Department of Civil Engineering, University of Queensland, 1992.
Den vollen Inhalt der Quelle findenZhu, K. Nonlinear dynamic analysis of lattice structures. Brisbane: Universityof Queensland, Dept. of Civil Engineering, 1990.
Den vollen Inhalt der Quelle findenAkademii͡a nauk SSSR. I͡Akutskiĭ nauchnyĭ t͡sentr. Otdel prikladnoĭ matematiki i vychislitelʹnoĭ tekhniki, Hrsg. Matematicheskie metody sinteza mnogosloĭnykh struktur pri vozdeĭstvii voln. I͡Akutsk: I͡Akutskiĭ nauchnyĭ t͡sentr SO AN SSSR, 1990.
Den vollen Inhalt der Quelle findenGalvin, Brian Russell. Numerical studies of localized vibrating structures in nonlinear lattices. Monterey, Calif: Naval Postgraduate School, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Structured lattices"
Michelitsch, Thomas M., Alejandro P. Riascos, Bernard A. Collet, Andrzej F. Nowakowski und Franck C. G. A. Nicolleau. „Generalized Space–Time Fractional Dynamics in Networks and Lattices“. In Advanced Structured Materials, 221–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38708-2_14.
Der volle Inhalt der QuellePorubov, Alexey V., Alena E. Osokina und Ilya D. Antonov. „Nonlinear Dynamics of Two-Dimensional Lattices with Complex Structure“. In Advanced Structured Materials, 309–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38708-2_18.
Der volle Inhalt der QuelleMichelitsch, Thomas, Bernard Collet, Alejandro Perez Riascos, Andrzej Nowakowski und Franck Nicolleau. „On Recurrence and Transience of Fractional RandomWalks in Lattices“. In Advanced Structured Materials, 555–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72440-9_29.
Der volle Inhalt der QuelleDos Reis, Francisco, und Jean-François Ganghoffer. „Construction of Micropolar Continua from the Homogenization of Repetitive Planar Lattices“. In Advanced Structured Materials, 193–217. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19219-7_9.
Der volle Inhalt der QuelleTurco, Emilio, Maciej Golaszewski, Ivan Giorgio und Luca Placidi. „Can a Hencky-Type Model Predict the Mechanical Behaviour of Pantographic Lattices?“ In Advanced Structured Materials, 285–311. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3764-1_18.
Der volle Inhalt der QuelleTurco, Emilio. „How the Properties of Pantographic Elementary Lattices Determine the Properties of Pantographic Metamaterials“. In Advanced Structured Materials, 489–506. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13307-8_33.
Der volle Inhalt der QuelleGoda, Ibrahim, Francisco Dos Reis und Jean-François Ganghoffer. „Limit Analysis of Lattices Based on the Asymptotic Homogenization Method and Prediction of Size Effects in Bone Plastic Collapse“. In Advanced Structured Materials, 179–211. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31721-2_9.
Der volle Inhalt der QuelleLoeb, Arthur L. „Lattices and Lattice Complexes“. In Space Structures, 123–25. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0437-4_15.
Der volle Inhalt der QuelleBain, Michael. „Structured Features from Concept Lattices for Unsupervised Learning and Classification“. In Lecture Notes in Computer Science, 557–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36187-1_49.
Der volle Inhalt der QuelleLyubashevsky, Vadim, und Thomas Prest. „Quadratic Time, Linear Space Algorithms for Gram-Schmidt Orthogonalization and Gaussian Sampling in Structured Lattices“. In Advances in Cryptology -- EUROCRYPT 2015, 789–815. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46800-5_30.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Structured lattices"
Chuman, Victor, Filip Milojković, Pol Van Dorpe und Niels Verellen. „Three-Dimensional Sparse Lattices for High-Throughput Fluorescence Microscopy“. In Imaging Systems and Applications, IM3G.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/isa.2024.im3g.2.
Der volle Inhalt der QuelleCameron, Andrew R., Sandra W. L. Cheng, Sacha Schwarz, Connor Kapahi, Dusan Sarenac, Michael Grabowecky, David G. Cory, Thomas Jennewein, Dmitry A. Pushin und Kevin J. Resch. „Remotely prepared structured wave lattices“. In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qth4a.3.
Der volle Inhalt der QuelleRogers, Benedict A., Max D. A. Valentine, Elise C. Pegg, Alexander J. G. Lunt und Vimal Dhokia. „Additive Manufacturing of Star Structured Auxetic Lattices With Overhanging Links“. In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-93965.
Der volle Inhalt der QuelleLee, Sang Hyun, Ankit Ghiya, Sriram Vishwanath, Sung Soo Hwang und Sunghwan Kim. „Structured dirty-paper coding using low-density lattices“. In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2010. http://dx.doi.org/10.1109/icassp.2010.5496012.
Der volle Inhalt der QuelleMejdoub, Mahmoud, Leonardo Fonteles, Chokri BenAmar und Marc Antonini. „Fast indexing method for image retrieval using tree-structured lattices“. In 2008 International Workshop on Content-Based Multimedia Indexing. IEEE, 2008. http://dx.doi.org/10.1109/cbmi.2008.4564970.
Der volle Inhalt der QuelleYamane, Keisaku, Kohei Iwasa, Kohei Kakizawa, Kazuhiko Oka, Yasunori Toda und Ryuji Morita. „Generation of intense ultrafast-rotating ring-shaped optical lattices with programmable control of rotational symmetry“. In SPIE Technologies and Applications of Structured Light, herausgegeben von Takashige Omatsu. SPIE, 2017. http://dx.doi.org/10.1117/12.2275015.
Der volle Inhalt der QuelleChen, Jiangce, Martha Baldwin, Sneha Narra und Christopher McComb. „Multi-Lattice Topology Optimization With Lattice Representation Learned by Generative Models“. In ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-145592.
Der volle Inhalt der QuelleTang, Tsz Ling Elaine, Yan Liu, Da Lu, Erhan Batuhan Arisoy und Suraj Musuvathy. „Lattice Structure Design Advisor for Additive Manufacturing Using Gaussian Process“. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67282.
Der volle Inhalt der QuelleArdebili, Mahmoud K., Kerim Tuna Ikikardaslar, Colt Ehrnfeld und Feridun Delale. „3D Printed Cellular Structure Materials Under Impact and Compressive Loading“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23871.
Der volle Inhalt der QuelleAyaz Uddin, Mohammed, Imad Barsoum, Shanmugam Kumar und Andreas Schiffer. „Enhancing Energy Absorption Capacity of Pyramidal Lattice Structures via Geometrical Tailoring and 3D Printing“. In ASME 2024 Aerospace Structures, Structural Dynamics, and Materials Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/ssdm2024-121512.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Structured lattices"
Fry, A. T., L. E. Crocker, M. J. Lodeiro, M. Poole, P. Woolliams, A. Koko, N. Leung, D. England und C. Breheny. Tensile property measurement of lattice structures. National Physical Laboratory, Juli 2023. http://dx.doi.org/10.47120/npl.mat119.
Der volle Inhalt der QuelleLiu, Keh-Fei, und Terrence Draper. Lattice QCD Calculation of Nucleon Structure. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1323029.
Der volle Inhalt der QuelleWilliams, James H., und Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1987. http://dx.doi.org/10.21236/ada190037.
Der volle Inhalt der QuelleWilliams, James H., und Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1987. http://dx.doi.org/10.21236/ada190611.
Der volle Inhalt der QuelleWilliams, James H., und Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1985. http://dx.doi.org/10.21236/ada170316.
Der volle Inhalt der QuelleBraun, D. W., G. W. Crabtree, H. G. Kaper, G. K. Leaf, D. M. Levine, V. M. Vinokur und A. E. Koshelev. The structure of a moving vortex lattice. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/179299.
Der volle Inhalt der QuelleParsa, Z., und S. Tepikian. Overview of the structure resonances in the AGS-Booster lattices. Office of Scientific and Technical Information (OSTI), Juni 1986. http://dx.doi.org/10.2172/1150423.
Der volle Inhalt der QuelleSkowronski, Marek, und D. W. Greve. Growth of Lattice Matched Nitride Alloys and Structures. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada354115.
Der volle Inhalt der QuelleWilliams, James H., Nagem Jr. und Raymond J. Computation of Natural Frequencies of Planar Lattice Structure. Fort Belvoir, VA: Defense Technical Information Center, März 1987. http://dx.doi.org/10.21236/ada185387.
Der volle Inhalt der QuelleHughes, Nathan. Computed Tomography (CT) Analysis of 3D Printed Lattice Structures. Office of Scientific and Technical Information (OSTI), Mai 2023. http://dx.doi.org/10.2172/1975633.
Der volle Inhalt der Quelle