Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Structure du chromosome“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Structure du chromosome" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Structure du chromosome"
Tamang, Sonam. „Principles and Applications of Fetal Chromosome Number and Structure Analysis“. Sriwijaya Journal of Obstetrics and Gynecology 1, Nr. 2 (20.12.2023): 39–43. http://dx.doi.org/10.59345/sjog.v1i2.83.
Der volle Inhalt der QuelleGasser, Susan M. „Chromosome Structure: Coiling up chromosomes“. Current Biology 5, Nr. 4 (April 1995): 357–60. http://dx.doi.org/10.1016/s0960-9822(95)00071-6.
Der volle Inhalt der QuelleEidelman, Yuri, Ilya Salnikov, Svetlana Slanina und Sergey Andreev. „Chromosome Folding Promotes Intrachromosomal Aberrations under Radiation- and Nuclease-Induced DNA Breakage“. International Journal of Molecular Sciences 22, Nr. 22 (10.11.2021): 12186. http://dx.doi.org/10.3390/ijms222212186.
Der volle Inhalt der QuelleMatsunaga, Sachihiro, und Kiichi Fukui. „The chromosome peripheral proteins play an active role in chromosome dynamics“. BioMolecular Concepts 1, Nr. 2 (01.08.2010): 157–64. http://dx.doi.org/10.1515/bmc.2010.018.
Der volle Inhalt der QuelleSpell, R. M., und C. Holm. „Nature and distribution of chromosomal intertwinings in Saccharomyces cerevisiae“. Molecular and Cellular Biology 14, Nr. 2 (Februar 1994): 1465–76. http://dx.doi.org/10.1128/mcb.14.2.1465-1476.1994.
Der volle Inhalt der QuelleSpell, R. M., und C. Holm. „Nature and distribution of chromosomal intertwinings in Saccharomyces cerevisiae.“ Molecular and Cellular Biology 14, Nr. 2 (Februar 1994): 1465–76. http://dx.doi.org/10.1128/mcb.14.2.1465.
Der volle Inhalt der QuelleUchida, Tetsuya, Naoto Ishihara, Hiroyuki Zenitani, Keiichiro Hiratsu und Haruyasu Kinashi. „Circularized Chromosome with a Large Palindromic Structure in Streptomyces griseus Mutants“. Journal of Bacteriology 186, Nr. 11 (01.06.2004): 3313–20. http://dx.doi.org/10.1128/jb.186.11.3313-3320.2004.
Der volle Inhalt der QuellePelttari, Jeanette, Mary-Rose Hoja, Li Yuan, Jian-Guo Liu, Eva Brundell, Peter Moens, Sabine Santucci-Darmanin et al. „A Meiotic Chromosomal Core Consisting of Cohesin Complex Proteins Recruits DNA Recombination Proteins and Promotes Synapsis in the Absence of an Axial Element in Mammalian Meiotic Cells“. Molecular and Cellular Biology 21, Nr. 16 (15.08.2001): 5667–77. http://dx.doi.org/10.1128/mcb.21.16.5667-5677.2001.
Der volle Inhalt der QuelleAnderson, Lorinda K., Naser Salameh, Hank W. Bass, Lisa C. Harper, W. Z. Cande, Gerd Weber und Stephen M. Stack. „Integrating Genetic Linkage Maps With Pachytene Chromosome Structure in Maize“. Genetics 166, Nr. 4 (01.04.2004): 1923–33. http://dx.doi.org/10.1093/genetics/166.4.1923.
Der volle Inhalt der QuelleWolf, Klaus Werner, Karel Novák und František Marec. „Chromosome structure in spermatogenesis of Anabolia furcata (Trichoptera)“. Genome 35, Nr. 1 (01.02.1992): 46–52. http://dx.doi.org/10.1139/g92-008.
Der volle Inhalt der QuelleDissertationen zum Thema "Structure du chromosome"
Patra, Gurudatt. „Structure of mitotic chromosome and the role of condensin protein in the structural organization of chromosomes“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAJ020.
Der volle Inhalt der QuelleDuring mitosis, the interphase chromatin undergoes a massive round of compaction into rod-shaped structures. Condensins are protein complexes that have been known to play a major role in mitotic chromosome organization. Eukaryotes have two conserved condensin complexes, namely condensin 1 and 2. In vitro studies on naked DNA templates show evidence for loop extrusion activity of condensins in chromosome organization. However, there is still a lot to explore regarding the study of condensin function inside the crowded chromatin environment. We have used halo tag technology where the SMC2 domain of condensins is tagged to fluorescently label using a halo TMR ligand. This approach helps us to locate condensin-rich regions in partially decondensed mitotic chromosomes using cryo-light microscopy inside the vitrified chromosomes for cryo-electron tomography studies. Our tomograms show condensin complexes inside the chromatin environment. This opens up a window into the study of DNA binding activity of condensin, the oligomerization or clustering of condensin and its interaction with other non-histone components of mitotic chromosomes
Stear, Jeffrey Hamilton. „Studies of chromosome structure and movement in C. elegans /“. Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/5056.
Der volle Inhalt der QuelleFrancki, Michael G. „The midget chromosome as a model to study cereal chromosome structure /“. Title page, contents and summary only, 1995. http://web4.library.adelaide.edu.au/theses/09PH/09phf823.pdf.
Der volle Inhalt der QuelleWoodward, Jessica Christina. „Cell-lineage-specific chromosomal instability in condensin II mutant mice“. Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/22921.
Der volle Inhalt der QuelleDadon, Daniel Benjamin. „3D chromosome structure and chromatin proteomics“. Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104174.
Der volle Inhalt der QuelleCataloged from PDF version of thesis. "May 2016."
Includes bibliographical references.
The selective interpretation of the genome through transcription enables the production of every cell type's distinct gene expression program from a common genome. Transcription takes place within, and is controlled by, highly organized three-dimensional (3D) chromosome structures. The first part of the work presented here describes the generation of 3D chromosome regulatory landscape maps of human naive and primed embryonic stem cells. To create these 3D chromosome regulatory landscape maps, genome-wide enhancer and insulator locations were mapped and then placed into a 3D interaction framework formed by cohesin-mediated 3D chromosome structures. Enhancer (H3K27ac) and insulator (CTCF) locations were mapped using ChIP-sequencing, whereas 3D chromosome structures were detected by cohesin-ChIA-PET. 3D chromosome structures connecting insulators (CTCF-CTCF loops) were shown to form topologically associating domains (TADs) and insulated neighborhoods, which were mostly preserved in the transition between naive and primed states. Insulated neighborhoods are critical for proper gene expression, and their disruption leads to the improper regulation of local gene expression. Changes in enhancer-promoter loops occurred within preserved insulated neighborhoods during cell state transition. The CTCF anchors of CTCF-CTCF loops are conserved across species and are frequently mutated in cancer cells. These 3D chromosome regulatory landscapes provide a foundation for the future investigation of the relationship between chromosome structure and gene control in human development and disease. The work presented in the second part focuses on developing an approach called "chromatin proteomic profiling" to identify protein factors associated with various active and repressed portions of the genome marked by specific histone modifications. The histone modifications assayed by chromatin proteomic profiling are associated with genomic regions where specific transcriptional activities occur, thus implicating the identified proteins in these activities. This chromatin proteomic profiling study revealed a catalog of known, implicated, and novel proteins associated with these functionally characterized genomic regions.
by Daniel Benjamin Dadon.
Ph. D.
Croft, Jenny Anne. „Correlating mammalian chromosome structure and function“. Thesis, University of Edinburgh, 1998. http://hdl.handle.net/1842/13491.
Der volle Inhalt der QuelleAlmuhur, Rana Ahmad Suleiman. „Integrating chromatin structure and global chromosome dynamics“. Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5573/.
Der volle Inhalt der QuelleGilbert, Sandra L. (Sandra Leigh) 1968. „Chromatin structure of the inactive X chromosome“. Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85344.
Der volle Inhalt der QuelleRoss, Brian Christopher. „Computational tools for modeling and measuring chromosome structure“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/79262.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 99-112).
DNA conformation within cells has many important biological implications, but there are challenges both in modeling DNA due to the need for specialized techniques, and experimentally since tracing out in vivo conformations is currently impossible. This thesis contributes two computational projects to these efforts. The first project is a set of online and offline calculators of conformational statistics using a variety of published and unpublished methods, addressing the current lack of DNA model-building tools intended for general use. The second project is a reconstructive analysis that could enable in vivo mapping of DNA conformation at high resolution with current experimental technology.
by Brian Christopher Ross.
Ph.D.
Horsley, Sharon Wendy. „Characterisation of chromosome 16 rearrangements in patients with alpha thalassaemia“. Thesis, Oxford Brookes University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325201.
Der volle Inhalt der QuelleBücher zum Thema "Structure du chromosome"
Gustafson, J. Perry, und R. Appels, Hrsg. Chromosome Structure and Function. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1037-2.
Der volle Inhalt der QuelleBhat, Tariq Ahmad, und Aijaz Ahmad Wani, Hrsg. Chromosome Structure and Aberrations. New Delhi: Springer India, 2017. http://dx.doi.org/10.1007/978-81-322-3673-3.
Der volle Inhalt der QuelleHouben, Andreas. Chromosome structure and function. Basel: Karger, 2009.
Den vollen Inhalt der Quelle findenS, Risley Michael, Hrsg. Chromosome structure and function. New York: Van Nostrand Reinhold Co., 1986.
Den vollen Inhalt der Quelle findenMitchell, Eddy E., Griswold Michael D, New York Academy of Sciences und North American Testis Workshop (19th : 2007 : Tampa, Fla.), Hrsg. Testicular chromosome structure and gene expression. Malden, MA: Published on behalf of the New York Academy of Sciences by Blackwell Pub., 2007.
Den vollen Inhalt der Quelle findenTherman, Eeva. Human chromosomes: Structure, behavior, effects. 2. Aufl. New York: Springer-Verlag, 1985.
Den vollen Inhalt der Quelle findenSobit, R. C., G. Obe und R. S. Athwal, Hrsg. Some Aspects of Chromosome Structure and Functions. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0334-6.
Der volle Inhalt der QuelleC, Sobti R., Obe G und Athwal R. S, Hrsg. Some aspects of chromosome structure and functions. Boston: Kluwer Academic Publishers, 2002.
Den vollen Inhalt der Quelle findenStadler Genetics Symposium (18th 1987 University of Missouri--Columbia). Chromosome structure and function: Impact of new concepts. New York: Plenum Press, 1988.
Den vollen Inhalt der Quelle finden1924-, Smith George F., und National Down Syndrome Society (U.S.). Symposium, Hrsg. Molecular structure of the number 21 chromosome and Down syndrome. New York, N.Y: New York Academy of Sciences, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Structure du chromosome"
Pettijohn, D. E. „Bacterial Chromosome Structure“. In Nucleic Acids and Molecular Biology, 152–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84150-7_9.
Der volle Inhalt der QuelleAppels, Rudi, Rosalind Morris, Bikram S. Gill und Cedric E. May. „Variable Structure and Folding of DNA“. In Chromosome Biology, 244–69. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5409-7_17.
Der volle Inhalt der QuelleShakoori, Abdul Rauf. „Introduction to Chromosome“. In Chromosome Structure and Aberrations, 1–11. New Delhi: Springer India, 2017. http://dx.doi.org/10.1007/978-81-322-3673-3_1.
Der volle Inhalt der QuelleAppels, Rudi, Rosalind Morris, Bikram S. Gill und Cedric E. May. „A Historical Perspective on Chromosome Structure, Function, and Behavior“. In Chromosome Biology, 7–21. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5409-7_2.
Der volle Inhalt der QuelleElgin, S. C. R., S. A. Amero, J. C. Eissenberg, G. Fleischmann, D. S. Gilmour und T. C. James. „Distribution Patterns of Nonhistone Chromosomal Proteins on Polytene Chromosomes: Functional Correlations“. In Chromosome Structure and Function, 145–56. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1037-2_6.
Der volle Inhalt der QuelleBrenner, David J., John F. Ward und Rainer K. Sachs. „Track Structure, Chromosome Geometry and Chromosome Aberrations“. In Computational Approaches in Molecular Radiation Biology, 93–113. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9788-6_8.
Der volle Inhalt der QuelleGeszvain, Kati, und Robert Landick. „The Structure of Bacterial RNA Polymerase“. In The Bacterial Chromosome, 283–96. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817640.ch15.
Der volle Inhalt der QuelleDouglas, Ryan N., und James A. Birchler. „B Chromosomes“. In Chromosome Structure and Aberrations, 13–39. New Delhi: Springer India, 2017. http://dx.doi.org/10.1007/978-81-322-3673-3_2.
Der volle Inhalt der QuelleFlavell, R. B., M. D. Bennett, A. G. Seal und J. Hutchinson. „Chromosome structure and organization“. In Wheat Breeding, 211–68. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3131-2_8.
Der volle Inhalt der QuelleOliveira, Claudio, Jonathan M. Wright und Fausto Foresti. „Chromosome Structure in Fishes“. In Some Aspects of Chromosome Structure and Functions, 103–8. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0334-6_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Structure du chromosome"
„Chromosome evolution in Ruminantia“. In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-087.
Der volle Inhalt der Quelle„X-chromosome Inactivation in American Mink iPSCs“. In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-310.
Der volle Inhalt der Quellede Grooth, Bart G., Constant A. Putman, Kees O. van der Werf, Niko F. van Hulst, Geeske van Oort und Jan Greve. „Chromosome structure investigated with the atomic-force microscope“. In OE/LASE '92, herausgegeben von Srinivas Manne. SPIE, 1992. http://dx.doi.org/10.1117/12.58188.
Der volle Inhalt der QuelleSukjit, P., und H. Unger. „Chromosome-Controlled Structure Building in Decentralized Computer Systems“. In Modelling, Identification, and Control. Calgary,AB,Canada: ACTAPRESS, 2010. http://dx.doi.org/10.2316/p.2010.702-077.
Der volle Inhalt der Quelle„Analysis of chromosome structure in Musaceae using oligo painting“. In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-172.
Der volle Inhalt der QuelleKozyreva, S. Yu, M. M. Gridina, A. A. Torgasheva, V. S. Fishman, K. S. Zadesenets und L. P. Malinovskaya. „DISSECTING THE STRUCTURE OF THE CHROMOSOMAL REARRANGEMENTS IN CHROMOSOME 1A IN GREAT TITS (PARUS MAJOR) USING HI-C TECHNIQUE“. In OpenBio-2023. ИПЦ НГУ, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-21.
Der volle Inhalt der Quelle„Chromosome synapsis and recombination in intraspecific and interspecific heterozygotes for chromosomal rearrangements in voles of the genus Alexandromys“. In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-384.
Der volle Inhalt der Quelle„Composition of sex chromosomes of veiled chameleon (Chamaeleo calyptratus, Iguania, Squamata) reveals new insights into sex chromosome evolution of iguanian lizards“. In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-097.
Der volle Inhalt der QuelleAliefa, Marwa Hasna, und Suyanto Suyanto. „Variable-Length Chromosome for Optimizing the Structure of Recurrent Neural Network“. In 2020 International Conference on Data Science and Its Applications (ICoDSA). IEEE, 2020. http://dx.doi.org/10.1109/icodsa50139.2020.9213012.
Der volle Inhalt der Quelle„Different approaches to chromosome rearrangement detection in the model cell line“. In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-078.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Structure du chromosome"
Rill, R. The impact of energy related pollutants on chromosome structure. Office of Scientific and Technical Information (OSTI), Oktober 1989. http://dx.doi.org/10.2172/5345926.
Der volle Inhalt der QuelleShapiro, Daniel Benjamin. Polarized light scattering as a probe for changes in chromosome structure. Office of Scientific and Technical Information (OSTI), Oktober 1993. http://dx.doi.org/10.2172/10107208.
Der volle Inhalt der QuelleBreiman, Adina, Jan Dvorak, Abraham Korol und Eduard Akhunov. Population Genomics and Association Mapping of Disease Resistance Genes in Israeli Populations of Wild Relatives of Wheat, Triticum dicoccoides and Aegilops speltoides. United States Department of Agriculture, Dezember 2011. http://dx.doi.org/10.32747/2011.7697121.bard.
Der volle Inhalt der QuellePawlowski, Wojtek P., und Avraham A. Levy. What shapes the crossover landscape in maize and wheat and how can we modify it. United States Department of Agriculture, Januar 2015. http://dx.doi.org/10.32747/2015.7600025.bard.
Der volle Inhalt der QuelleMedrano, Juan, Adam Friedmann, Moshe (Morris) Soller, Ehud Lipkin und Abraham Korol. High resolution linkage disequilibrium mapping of QTL affecting milk production traits in Israel Holstein dairy cattle. United States Department of Agriculture, März 2008. http://dx.doi.org/10.32747/2008.7696509.bard.
Der volle Inhalt der QuelleFallik, Elazar, Robert Joly, Ilan Paran und Matthew A. Jenks. Study of the Physiological, Molecular and Genetic Factors Associated with Postharvest Water Loss in Pepper Fruit. United States Department of Agriculture, Dezember 2012. http://dx.doi.org/10.32747/2012.7593392.bard.
Der volle Inhalt der QuelleGlesne, D., E. Huberman, F. Collart, T. Varkony und H. Drabkin. Chromosomal localization and structure of the human type II IMP dehydrogenase gene. Office of Scientific and Technical Information (OSTI), Mai 1994. http://dx.doi.org/10.2172/10148872.
Der volle Inhalt der QuelleBradbury, E. M. Structural studies of chromatin and chromosomes. Progress report, March 15--September 15, 1997. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/548675.
Der volle Inhalt der QuelleRill, R. L. The impact of energy related pollutants on chromosome structures. Final performance report, May 1, 1987--April 30, 1992. Office of Scientific and Technical Information (OSTI), März 1998. http://dx.doi.org/10.2172/607511.
Der volle Inhalt der QuelleManulis-Sasson, Shulamit, Christine D. Smart, Isaac Barash, Laura Chalupowicz, Guido Sessa und Thomas J. Burr. Clavibacter michiganensis subsp. michiganensis-tomato interactions: expression and function of virulence factors, plant defense responses and pathogen movement. United States Department of Agriculture, Februar 2015. http://dx.doi.org/10.32747/2015.7594405.bard.
Der volle Inhalt der Quelle