Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Structural parameter of refractive index“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Structural parameter of refractive index" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Structural parameter of refractive index"
Prajapati, A. N. „Study of Molecular Interaction in Binary Mixtures (1-Propanol + Acetophenone)“. Advanced Materials Research 1141 (August 2016): 125–30. http://dx.doi.org/10.4028/www.scientific.net/amr.1141.125.
Der volle Inhalt der QuelleYu, Jing, Tingting Lang und Huateng Chen. „All-Metal Terahertz Metamaterial Absorber and Refractive Index Sensing Performance“. Photonics 8, Nr. 5 (14.05.2021): 164. http://dx.doi.org/10.3390/photonics8050164.
Der volle Inhalt der QuelleCiocirlan, Oana, und Olga Iulian. „Density, viscosity and refractive index of the dimethyl sulfoxide + o-xylene system“. Journal of the Serbian Chemical Society 74, Nr. 3 (2009): 317–29. http://dx.doi.org/10.2298/jsc0903317c.
Der volle Inhalt der QuelleHussein, Ahang M., Elham M. A. Dannoun, Shujahadeen B. Aziz, Mohamad A. Brza, Rebar T. Abdulwahid, Sarkawt A. Hussen, Sarkawt Rostam, Dalia M. T. Mustafa und Dana S. Muhammad. „Steps Toward the Band Gap Identification in Polystyrene Based Solid Polymer Nanocomposites Integrated with Tin Titanate Nanoparticles“. Polymers 12, Nr. 10 (10.10.2020): 2320. http://dx.doi.org/10.3390/polym12102320.
Der volle Inhalt der QuelleLiu, Yan Jun, und Tong Dai. „Investigation on Dispersion Property of a Novel Photonic Crystal Fiber with Square Array Air Holes“. Advanced Materials Research 571 (September 2012): 278–82. http://dx.doi.org/10.4028/www.scientific.net/amr.571.278.
Der volle Inhalt der QuelleSakiroglu, S. „Linear and nonlinear optical absorption coefficients and refractive index changes in Morse quantum wells under electric field“. International Journal of Modern Physics B 30, Nr. 30 (23.11.2016): 1650209. http://dx.doi.org/10.1142/s021797921650209x.
Der volle Inhalt der QuelleAziz, Shujahadeen B., Elham M. A. Dannoun, Dana A. Tahir, Sarkawt A. Hussen, Rebar T. Abdulwahid, Muaffaq M. Nofal, Ranjdar M. Abdullah, Ahang M. Hussein und Iver Brevik. „Synthesis of PVA/CeO2 Based Nanocomposites with Tuned Refractive Index and Reduced Absorption Edge: Structural and Optical Studies“. Materials 14, Nr. 6 (23.03.2021): 1570. http://dx.doi.org/10.3390/ma14061570.
Der volle Inhalt der QuelleATUCHIN, V. V., V. SH ALIEV, B. M. AYUPOV und I. V. KOROLKOV. „DECREASED REFRACTIVE INDEX OF NANOCRYSTALLINE ZIRCONIUM OXIDE THIN FILMS“. International Journal of Modern Physics B 26, Nr. 02 (20.01.2012): 1250012. http://dx.doi.org/10.1142/s0217979211102101.
Der volle Inhalt der QuelleDhanya, I., und C. S. Menon. „Effect of Thickness on Structural and Optical Properties of Tetra-tert- butyl-2, 3-naphthalocyanine Thin Films“. E-Journal of Chemistry 8, Nr. 4 (2011): 1686–95. http://dx.doi.org/10.1155/2011/752982.
Der volle Inhalt der QuelleMichihata, Masaki, Deqing Kong, Kiyoshi Takamasu und Satoru Takahashi. „A Simulation Study of Plasmonic Substrate for In-Process Measurement of Refractive Index in Nano-Stereolithography“. International Journal of Automation Technology 11, Nr. 5 (30.08.2017): 772–80. http://dx.doi.org/10.20965/ijat.2017.p0772.
Der volle Inhalt der QuelleDissertationen zum Thema "Structural parameter of refractive index"
Maluš, Miroslav. „Komplexní model turbulence pro různé velikosti cel“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442416.
Der volle Inhalt der QuelleDěcká, Klára. „Interferometrické měření fázových změn optického svazku v turbulenci“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-377040.
Der volle Inhalt der QuelleAubrecht, Ondřej. „Studium profilu strukturního parametru indexu lomu v atmosféře“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219818.
Der volle Inhalt der QuelleRydström, Sara. „Regularization of Parameter Problems for Dynamic Beam Models“. Licentiate thesis, Växjö University, School of Mathematics and Systems Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-7367.
Der volle Inhalt der QuelleThe field of inverse problems is an area in applied mathematics that is of great importance in several scientific and industrial applications. Since an inverse problem is typically founded on non-linear and ill-posed models it is a very difficult problem to solve. To find a regularized solution it is crucial to have a priori information about the solution. Therefore, general theories are not sufficient considering new applications.
In this thesis we consider the inverse problem to determine the beam bending stiffness from measurements of the transverse dynamic displacement. Of special interest is to localize parts with reduced bending stiffness. Driven by requirements in the wood-industry it is not enough considering time-efficient algorithms, the models must also be adapted to manage extremely short calculation times.
For the developing of efficient methods inverse problems based on the fourth order Euler-Bernoulli beam equation and the second order string equation are studied. Important results are the transformation of a nonlinear regularization problem to a linear one and a convex procedure for finding parts with reduced bending stiffness.
Kovaľová, Soňa. „Interferometrické měření optického signálu v turbulenci“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-401960.
Der volle Inhalt der QuelleYang, Zepeng. „Bird-inspired self-assembly of hollow nanoparticles“. University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1590589915703906.
Der volle Inhalt der QuelleBárta, Miroslav. „Vliv atmosférických turbulencí na optický svazek“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-218156.
Der volle Inhalt der QuellePepenene, Refuoe Donald. „Macroscopic and Microscopic surface features of Hydrogenated silicon thin films“. University of the Western Cape, 2018. http://hdl.handle.net/11394/6414.
Der volle Inhalt der QuelleAn increasing energy demand and growing environmental concerns regarding the use of fossil fuels in South Africa has led to the challenge to explore cheap, alternative sources of energy. The generation of electricity from Photovoltaic (PV) devices such as solar cells is currently seen as a viable alternative source of clean energy. As such, crystalline, amorphous and nanocrystalline silicon thin films are expected to play increasingly important roles as economically viable materials for PV development. Despite the growing interest shown in these materials, challenges such as the partial understanding of standardized measurement protocols, and the relationship between the structure and optoelectronic properties still need to be overcome.
Onelli, Olimpia Domitilla. „Complex photonic structures in nature : from order to disorder“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273768.
Der volle Inhalt der QuelleChan, Chun-Fan. „Side-polished and tilted fiber Bragg grating refractive index sensors for structural health monitoring applications“. 2007. http://hdl.handle.net/1993/29469.
Der volle Inhalt der QuelleBücher zum Thema "Structural parameter of refractive index"
Ochs, G. R. A refractive-index structure parameter profiling system. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 1989.
Den vollen Inhalt der Quelle findenOchs, G. R. A refractive-index structure parameter profiling system. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 1989.
Den vollen Inhalt der Quelle findenOchs, G. R. A refractive-index structure parameter profiling system. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 1989.
Den vollen Inhalt der Quelle findenOchs, G. R. A refractive-index structure parameter profiling system. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 1989.
Den vollen Inhalt der Quelle findenOchs, G. R. A refractive-index structure parameter profiling system. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 1989.
Den vollen Inhalt der Quelle findenOchs, G. R. A refractive-index structure parameter profiling system. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Wave Propagation Laboratory, 1989.
Den vollen Inhalt der Quelle findenAnalyzing the Effects of Meteorology on Radar Measured Index of Refraction Structure Parameter. Storming Media, 2001.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Structural parameter of refractive index"
Weik, Martin H. „refractive-index profile parameter“. In Computer Science and Communications Dictionary, 1452. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_15877.
Der volle Inhalt der QuelleDrobinski, Ph, A. Dabas, P. Delville, X. Favreau und P. H. Flamant. „Measurement of the Refractive Index Structure Parameter C n 2 in the Planetary Boundary Layer Using a Pulsed Coherent 10 μm Lidar in Direct Detection“. In Advances in Atmospheric Remote Sensing with Lidar, 251–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60612-0_62.
Der volle Inhalt der QuelleGaliatsatos, Vassilios. „Refractive Index, Stress-Optical Coefficient, and Optical Configuration Parameter of Polymers“. In Physical Properties of Polymers Handbook, 823–53. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-69002-5_50.
Der volle Inhalt der QuelleFreeman, Richard, James King und Gregory Lafyatis. „Models of Electromagnetic Response of Materials“. In Electromagnetic Radiation, 366–97. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198726500.003.0010.
Der volle Inhalt der Quelle„Design and Simulations of Negative Refractive Index Metamaterial (NIR) SRR and CSRR Structures“. In Modeling and Simulations for Metamaterials, 141–47. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-4180-6.ch006.
Der volle Inhalt der QuelleThomas, Michael E. „Spectroscopy of Matter“. In Optical Propagation in Linear Media. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195091618.003.0007.
Der volle Inhalt der QuelleUmamaheswari, A., A. Puratchikody und Sakthivel Balasubramaniyan. „Target Identification of HDAC8 Isoform for the Treatment of Cancer“. In Advances in Medical Technologies and Clinical Practice, 140–72. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7326-5.ch007.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Structural parameter of refractive index"
Henriksson, Markus, und Robin Forsling. „Temporally resolved refractive index structure parameter measurement“. In Optics in Atmospheric Propagation and Adaptive Systems, herausgegeben von Karin U. Stein und Szymon Gladysz. SPIE, 2017. http://dx.doi.org/10.1117/12.2278315.
Der volle Inhalt der QuelleYazar, Ibrahim, Yusuf E. Yenice und Filiz Sari. „Probability distribution of refractive index structure parameter“. In 2017 25th Signal Processing and Communications Applications Conference (SIU). IEEE, 2017. http://dx.doi.org/10.1109/siu.2017.7960584.
Der volle Inhalt der QuelleXuan, Yimin, Jinguo Huang und Qiang Li. „Tunable Negative Refractive Index Metamaterials Based on Thermochromic Oxides“. In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75033.
Der volle Inhalt der QuelleLamprecht, Christopher, Pasha Bekhrad, Hristo Ivanov und Erich Leitgeb. „Modelling the Refractive Index Structure Parameter: A ResNet Approach“. In 2020 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom). IEEE, 2020. http://dx.doi.org/10.1109/cobcom49975.2020.9174186.
Der volle Inhalt der QuelleRudiger, Joshua J., John S. deGrassie, Stephen Hammel, Kevin Book und Brook Baker. „A machine learning approach for forecasting the refractive index structure parameter“. In Laser Communication and Propagation through the Atmosphere and Oceans VII, herausgegeben von Alexander M. van Eijk, Stephen Hammel und Jeremy P. Bos. SPIE, 2018. http://dx.doi.org/10.1117/12.2323835.
Der volle Inhalt der QuelleEaton, Frank, Bruce Masson, Ila Hahn, Sean Borror, Brad Rennich, Frank Eaton, Bruce Masson, Ila Hahn, Sean Borror und Brad Rennich. „Comparison of aircraft and radar observations of the refractive index structure parameter“. In 28th Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-2354.
Der volle Inhalt der QuelleOchs, Gerard R. „Measurement Of The Refractive-Index Structure Parameter By Incoherent Aperture Scintillation Techniques“. In SPIE 1989 Technical Symposium on Aerospace Sensing, herausgegeben von Norman S. Kopeika und Walter B. Miller. SPIE, 1989. http://dx.doi.org/10.1117/12.960863.
Der volle Inhalt der QuelleHannah, Emily D., William C. Swann, Jennifer L. Ellis, Martha I. Bodine, Carter Mak, Nathan Kuczun, Nathan R. Newbury, Laura C. Sinclair, Andreas Muschinski und Gregory B. Rieker. „Retrieval of the Refractive Index Structure Parameter from Frequency Comb Timing Jitter Data“. In Propagation Through and Characterization of Atmospheric and Oceanic Phenomena. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/pcaop.2020.ptu4f.5.
Der volle Inhalt der QuelleZhao, Junwei, Xiwen Qiang, Zhigang Zhang, Shuanglian Feng und Yuehong Hu. „A measurement system of atmospheric refractive index structure parameter based on solar power device“. In 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT 2012), herausgegeben von Yadong Jiang, Junsheng Yu und Zhifeng Wang. SPIE, 2012. http://dx.doi.org/10.1117/12.975652.
Der volle Inhalt der QuelleLeclerc, Troy T., Ronald L. Phillips, Larry C. Andrews, David T. Wayne, Paul Sauer und Robert Crabbs. „Prediction of the ground-level refractive index structure parameter from the measurement of atmospheric conditions“. In SPIE Defense, Security, and Sensing, herausgegeben von Linda M. Wasiczko Thomas und Earl J. Spillar. SPIE, 2010. http://dx.doi.org/10.1117/12.852426.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Structural parameter of refractive index"
Tunick, Arnold D. The Refractive Index Structure Parameter/Atmospheric Optical Turbulence Model: CN2. Fort Belvoir, VA: Defense Technical Information Center, April 1998. http://dx.doi.org/10.21236/ada341685.
Der volle Inhalt der QuelleChang, Mark P., Carlos O. Font, G. C. Gilbreath und Eun Oh. Humidity's Influence on Visible Region Refractive Index Structure Parameter Cn2. Fort Belvoir, VA: Defense Technical Information Center, Mai 2007. http://dx.doi.org/10.21236/ada474836.
Der volle Inhalt der Quelle