Zeitschriftenartikel zum Thema „String models“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: String models.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "String models" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Gustafson, Gösta. „String models“. Nuclear Physics A 566 (Januar 1994): 233–44. http://dx.doi.org/10.1016/0375-9474(94)90629-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Boulware, David G., und S. Deser. „String-Generated Gravity Models“. Physical Review Letters 55, Nr. 24 (09.12.1985): 2656–60. http://dx.doi.org/10.1103/physrevlett.55.2656.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lawrence, Albion, und John McGreevy. „D-terms and D-strings in open string models“. Journal of High Energy Physics 2004, Nr. 10 (23.10.2004): 056. http://dx.doi.org/10.1088/1126-6708/2004/10/056.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

RANDJBAR-DAEMI, S., ABDUS SALAM und J. A. STRATHDEE. „σ-MODELS AND STRING THEORIES“. International Journal of Modern Physics A 02, Nr. 03 (Juni 1987): 667–93. http://dx.doi.org/10.1142/s0217751x87000247.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The propagation of closed bosonic strings interacting with background gravitational and dilaton fields is reviewed. The string is treated as a quantum field theory on a compact 2-dimensional manifold. The question is posed as to how the conditions for the vanishing trace anomaly and the ensuing background field equations may depend on global features of the manifold. It is shown that to the leading order in σ-model perturbation theory the string loop effects do not modify the gravitational and the dilaton field equations. However for the purely bosonic strings new terms involving the modular parameter of the world sheet are induced by quantum effects which can be absorbed into a re-definition of the background fields. We also discuss some aspects of several regularization schemes such as dimensional, Pauli-Villars and the proper-time cut off in an appendix.
5

Faraggi, A. E., E. Manno und C. Timirgaziu. „Minimal standard heterotic string models“. European Physical Journal C 50, Nr. 3 (06.03.2007): 701–10. http://dx.doi.org/10.1140/epjc/s10052-007-0243-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Nepomechie, Rafael I. „String models with twisted currents“. Physical Review D 34, Nr. 4 (15.08.1986): 1129–35. http://dx.doi.org/10.1103/physrevd.34.1129.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Bergman, Oren, und Charles B. Thorn. „String bit models for superstring“. Physical Review D 52, Nr. 10 (15.11.1995): 5980–96. http://dx.doi.org/10.1103/physrevd.52.5980.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Danilov, G. S., und L. N. Lipatov. „BFKL pomeron in string models“. Nuclear Physics B 754, Nr. 1-2 (Oktober 2006): 187–232. http://dx.doi.org/10.1016/j.nuclphysb.2006.07.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Moss de Oliveira, S., P. M. C. de Oliveira und D. Stauffer. „Bit-string models for parasex“. Physica A: Statistical Mechanics and its Applications 322 (Mai 2003): 521–30. http://dx.doi.org/10.1016/s0378-4371(02)01916-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Constantin, Andrei, Yang-Hui He und Andre Lukas. „Counting string theory standard models“. Physics Letters B 792 (Mai 2019): 258–62. http://dx.doi.org/10.1016/j.physletb.2019.03.048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Yang, Z. „Compactified D=1 string models“. Physics Letters B 243, Nr. 4 (Juli 1990): 365–72. http://dx.doi.org/10.1016/0370-2693(90)91398-u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Lorenz-Petzold, D. „String-driven anisotropic cosmological models“. Astrophysics and Space Science 155, Nr. 2 (1989): 335–39. http://dx.doi.org/10.1007/bf00643871.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Curtright, T. L., G. I. Ghandour und C. B. Thorn. „Spin content of string models“. Physics Letters B 182, Nr. 1 (Dezember 1986): 45–52. http://dx.doi.org/10.1016/0370-2693(86)91076-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Lorenz-Petzold, D. „String-generated anisotropic cosmological models“. Physics Letters B 197, Nr. 1-2 (Oktober 1987): 71–75. http://dx.doi.org/10.1016/0370-2693(87)90344-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Bailin, David, und Alex Love. „String unification in orbifold models“. Physics Letters B 278, Nr. 1-2 (März 1992): 125–30. http://dx.doi.org/10.1016/0370-2693(92)90722-g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Aoyama, S., P. Pasti und M. Tonin. „The GS and NRS heterotic strings from twistor-string models“. Physics Letters B 283, Nr. 3-4 (Juni 1992): 213–17. http://dx.doi.org/10.1016/0370-2693(92)90010-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Xia, Hui, Yi Hua Dou, Xin He Wang und Jiang Wen Xu. „Sectionalized Mechanical Models of Drilling Tool of Trenchless Directional Drilling“. Applied Mechanics and Materials 268-270 (Dezember 2012): 1190–93. http://dx.doi.org/10.4028/www.scientific.net/amm.268-270.1190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
There are three working conditions namely drilling a guide hole, expanding the guide hole and pulling back pipeline in trenchless directional drilling. The position of drill string in the wellbore and loads exerted on the drill string varied in different working conditions. The models of buckling analysis of drill strings under compression, mechanical analysis of drill string under axial compression near drill bit in inclined straight section, mechanical analysis of drill string with multi-centralizers under axial compression near drill bit in inclined straight section, mechanical analysis of drill string near drill bit under axial compression in horizontal section, mechanical analysis of drill string near drill bit under axial tension in horizontal section, mechanical analysis of drill strings near drill bit under axial tension in inclined straight section and mechanical analysis of drill string in failed well are established based on the characteristic of loads and trajectories in each section. The establishment of sectionalized mechanical model of drilling tool is the fundament of further study of force analysis, deformation analysis and stress analysis.
18

Kerkhof, Jeroen, und Antoon Pelsser. „Observational Equivalence of Discrete String Models and Market Models“. Journal of Derivatives 10, Nr. 1 (31.08.2002): 55–61. http://dx.doi.org/10.3905/jod.2002.319190.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Catenacci, Roberto, und Pietro Grassi. „String Sigma Models on Curved Supermanifolds“. Universe 4, Nr. 4 (24.04.2018): 60. http://dx.doi.org/10.3390/universe4040060.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Hernández, Francisco J., Francisco Nettel und Hernando Quevedo. „Gravitational fields as generalized string models“. Gravitation and Cosmology 15, Nr. 2 (April 2009): 109–20. http://dx.doi.org/10.1134/s0202289309020029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Singh, G. P., und T. Singh. „String Cosmological Models with Magnetic Field“. General Relativity and Gravitation 31, Nr. 3 (März 1999): 371–78. http://dx.doi.org/10.1023/a:1026644828215.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Shabelski, Y. M., und M. G. Ryskin. „Tetraquarks and pentaquarks in string models“. European Physical Journal C 50, Nr. 1 (03.02.2007): 81–83. http://dx.doi.org/10.1140/epjc/s10052-006-0207-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Craps, Ben. „Big bang models in string theory“. Classical and Quantum Gravity 23, Nr. 21 (04.10.2006): S849—S881. http://dx.doi.org/10.1088/0264-9381/23/21/s01.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Berera, Arjun, und Thomas W. Kephart. „Ubiquitous Inflaton in String-Inspired Models“. Physical Review Letters 83, Nr. 6 (09.08.1999): 1084–87. http://dx.doi.org/10.1103/physrevlett.83.1084.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Kawai, H., D. C. Lewellen und S. H. H. Tye. „Classification of closed-fermionic-string models“. Physical Review D 34, Nr. 12 (15.12.1986): 3794–804. http://dx.doi.org/10.1103/physrevd.34.3794.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Anagnostopoulos, Konstantinos N., Jun Nishimura und Poul Olesen. „Noncommutative String Worldsheets from Matrix Models“. Journal of High Energy Physics 2001, Nr. 04 (20.04.2001): 024. http://dx.doi.org/10.1088/1126-6708/2001/04/024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Momen, Arshad, und Carl Rosenzweig. „Deconfinement transition and flux-string models“. Physical Review D 56, Nr. 3 (01.08.1997): 1437–44. http://dx.doi.org/10.1103/physrevd.56.1437.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

CVETIČ, MIRJAM, und PAUL LANGACKER. „NEW GAUGE BOSONS FROM STRING MODELS“. Modern Physics Letters A 11, Nr. 15 (20.05.1996): 1247–62. http://dx.doi.org/10.1142/s0217732396001260.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We address the mass ranges of new neutral gauge bosons and constraints on the accompanying exotic particles as predicted by a class of superstring models. Under certain assumptions about the supersymmetry breaking parameters we show that breaking of an additional U(1)′ symmetry is radiative when the appropriate Yukawa couplings of exotic particles are of order one, analogous to the radiative breaking of the electroweak symmetry in the supersymmetric standard model due to the large top-quark Yukawa coupling. Such large Yukawa couplings occur for a large class of string models. The Z′ and exotic masses are either of [Formula: see text], or of a scale intermediate between the string and electroweak scales. In the former case, [Formula: see text] may be achieved without excessive fine-tuning, and is within future experimental reach.
29

Carter, Brandon, und Patrick Peter. „Supersonic string models for Witten vortices“. Physical Review D 52, Nr. 4 (15.08.1995): R1744—R1748. http://dx.doi.org/10.1103/physrevd.52.r1744.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Sagnotti, Augusto. „Open-string models with broken supersymmetry“. Nuclear Physics B - Proceedings Supplements 88, Nr. 1-3 (Juni 2000): 160–67. http://dx.doi.org/10.1016/s0920-5632(00)00764-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Bueno-Guerrero, Alberto, Manuel Moreno und Javier F. Navas. „Stochastic string models with continuous semimartingales“. Physica A: Statistical Mechanics and its Applications 433 (September 2015): 229–46. http://dx.doi.org/10.1016/j.physa.2015.03.070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Adhav, K. S., M. V. Dawande und V. B. Raut. „Bianchi Type-III String Cosmological Models“. International Journal of Theoretical Physics 48, Nr. 3 (16.09.2008): 700–705. http://dx.doi.org/10.1007/s10773-008-9846-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Singh, J. K. „String Cosmological Models in Lyra Geometry“. International Journal of Theoretical Physics 48, Nr. 3 (09.10.2008): 905–12. http://dx.doi.org/10.1007/s10773-008-9863-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Ram, Shri, und J. K. Singh. „Some spatially homogeneous string cosmological models“. General Relativity and Gravitation 27, Nr. 11 (November 1995): 1207–13. http://dx.doi.org/10.1007/bf02108233.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Hořava, Petr. „Background duality of open-string models“. Physics Letters B 231, Nr. 3 (November 1989): 251–57. http://dx.doi.org/10.1016/0370-2693(89)90209-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Nahm, W. „A classification of open string models“. Communications in Mathematical Physics 105, Nr. 1 (März 1986): 1–11. http://dx.doi.org/10.1007/bf01212338.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Brustein, Ram, und Merav Hadad. „Particle production in string cosmology models“. Physical Review D 57, Nr. 2 (15.01.1998): 725–40. http://dx.doi.org/10.1103/physrevd.57.725.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Quevedo, Fernando. „Local string models and moduli stabilisation“. Modern Physics Letters A 30, Nr. 07 (26.02.2015): 1530004. http://dx.doi.org/10.1142/s0217732315300049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A brief overview is presented of the progress made during the past few years on the general structure of local models of particle physics from string theory including: moduli stabilisation, supersymmetry breaking, global embedding in compact Calabi–Yau compactifications and potential cosmological implications. Type IIB D-brane constructions and the Large Volume Scenario (LVS) are discussed in some detail emphasising the recent achievements and the main open questions.
39

VAFA, CUMRUN. „STRING VACUA AND ORBIFOLDIZED LG MODELS“. Modern Physics Letters A 04, Nr. 12 (20.06.1989): 1169–85. http://dx.doi.org/10.1142/s0217732389001350.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We investigate how string vacua arise from N=2 superconformal models. In particular, we discuss how Landau-Ginzburg models with appropriate central charge can be orbifol-dized to construct string vacua. We develop techniques to compute the degeneracy and quantum numbers of the ground states of the LG models in the twisted sectors, even for the cases where the underlying LG model is not exactly solvable. This allows us to compute some interesting physical quantities such as the number of generations and anti-generations in the simplest compactification scenarios. The results agree with explicit computations in the cases where LG model is exactly solvable.
40

DUNBAR, DAVID C. „FERMIONIC STRING MODELS AND ZN ORBIFOLDS“. Modern Physics Letters A 04, Nr. 24 (20.11.1989): 2339–47. http://dx.doi.org/10.1142/s021773238900263x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

DEMETERFI, KREŠIMIR, und CHUNG-I. TAN. „STRING EQUATIONS FROM UNITARY MATRIX MODELS“. Modern Physics Letters A 05, Nr. 20 (20.08.1990): 1563–74. http://dx.doi.org/10.1142/s0217732390001785.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We investigate unitary matrix models in the scaling limit using the method of orthogonal polynomials on the unit circle. We show that, f or a certain choice of coupling constants, string equations belong to the same univesality class as equations obtained from Hermitian matrix models. In addition, we show how a new class of string equations emerges as a consequence of the compactness of the unitary groups.
42

Sénéchal, David. „Search for four-dimensional string models“. Physical Review D 39, Nr. 12 (15.06.1989): 3717–30. http://dx.doi.org/10.1103/physrevd.39.3717.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Dine, Michael, und Nathan Seiberg. „Are (0, 2) models string miracles?“ Nuclear Physics B 306, Nr. 1 (August 1988): 137–59. http://dx.doi.org/10.1016/0550-3213(88)90174-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Faraggi, A. E. „MSHSM - Minimal Standard Heterotic String Models“. Fortschritte der Physik 58, Nr. 7-9 (19.02.2010): 733–37. http://dx.doi.org/10.1002/prop.201000012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Bars, Itzhak. „Heterotic string models in curved spacetime“. Physics Letters B 293, Nr. 3-4 (Oktober 1992): 315–20. http://dx.doi.org/10.1016/0370-2693(92)90889-c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Andreev, Oleg. „String breaking in a cold wind as seen by string models“. Nuclear Physics B 977 (April 2022): 115724. http://dx.doi.org/10.1016/j.nuclphysb.2022.115724.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Bonelli, Giulio. „Matrix string models for exact (2,2) string theories in RR backgrounds“. Nuclear Physics B 649, Nr. 1-2 (Januar 2003): 130–42. http://dx.doi.org/10.1016/s0550-3213(02)01036-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

FILIPPOV, A. T., und A. P. ISAEV. „GAUGE MODELS OF “DISCRETE STRINGS”“. Modern Physics Letters A 04, Nr. 22 (30.10.1989): 2167–76. http://dx.doi.org/10.1142/s0217732389002434.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A new class of constrained hamiltonian systems with a finite number of degrees of freedom is proposed in which excitations can be divided into two groups analogous to the left and right movers of string theories. Some of these models can be regarded as discrete analogs of the bosonic string, and in the continuum limit with the infinite dimensional constraint algebra Vect (S1)⊗ Vect (S1) one can obtain the classical theory of closed bosonic strings. We also discuss the problem of quantizing these models and constructing the propagator by using path integral methods. A possibility of a supersymmetric extension of our models is also pointed out.
49

JOHNSON, CLIFFORD V. „HETEROTIC COSET MODELS“. Modern Physics Letters A 10, Nr. 07 (07.03.1995): 549–59. http://dx.doi.org/10.1142/s0217732395000582.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A description is given on how to construct (0, 2) supersymmetric conformal field theories as coset models. These models may be used as non-trivial backgrounds for heterotic string theory. They are realized as a combination of an anomalously gauged Wess–Zumino–Witten model, right-moving supersymmetric fermions, and left-moving current algebra fermions. Requiring the sum of the gauge anomalies from the bosonic and fermionic sectors to cancel yields the final model. Applications discussed include exact models of extremal four-dimensional charged black holes and Taub–NUT solutions of string theory. These coset models may also be used to construct important families of (0, 2) supersymmetric heterotic string compactifications. The Kazama–Suzuki models are the left-right symmetric special case of these models.
50

MINAHAN, JOSEPH A. „MATRIX MODELS AND ONE-DIMENSIONAL OPEN STRING THEORY“. International Journal of Modern Physics A 08, Nr. 20 (10.08.1993): 3599–614. http://dx.doi.org/10.1142/s0217751x93001466.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We propose a random matrix model as a representation for D = 1 open strings. We show that the model with one flavor of boundary fields is equivalent to N fermions with spin in a central potential that also includes a long-range ferromagnetic interaction between the fermions that falls off as 1/(rij)2. We also generalize this theory to contain an arbitrary number of flavors. For an appropriate choice of the matrix model potential the ground state of the system can be found. Using this potential, we calculate the free energy in the double scaling limit and show that the free energy expansion has the expected form for a theory of open and closed strings if the boundary field mass and couplings have a logarithmic divergence. We then examine the critical properties of this theory and show that the length of the boundary around a hole remains finite, even near the critical point. We also argue that unlike critical string theory or a D = 0 theory, the open string coupling constant is a free parameter.

Zur Bibliographie