Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Strain“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Strain" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Strain"
Li, Shunqun, Xuelei Cheng, Jianbao Fu, Lin Pan und Ran Hai. „Line strain representation and shear strain representation of 3D strain states“. PLOS ONE 16, Nr. 11 (18.11.2021): e0259655. http://dx.doi.org/10.1371/journal.pone.0259655.
Der volle Inhalt der QuelleDolzhanskyi, A. M., T. A. Ayupova, O. A. Nosko, O. P. Rybkin und O. A. Ayupov. „Transition from engineering strain to the true strain in analytical description of metals hardening“. Physical Metallurgy and Heat Treatment of Metals, Nr. 1 (92) (11.05.2021): 66–70. http://dx.doi.org/10.30838/j.pmhtm.2413.230321.66.736.
Der volle Inhalt der QuelleOuwerkerk, Janneke P., Hanne L. P. Tytgat, Janneke Elzinga, Jasper Koehorst, Pieter Van den Abbeele, Bernard Henrissat, Miguel Gueimonde et al. „Comparative Genomics and Physiology of Akkermansia muciniphila Isolates from Human Intestine Reveal Specialized Mucosal Adaptation“. Microorganisms 10, Nr. 8 (09.08.2022): 1605. http://dx.doi.org/10.3390/microorganisms10081605.
Der volle Inhalt der QuelleSirkis, J. S., Y. L. Lo und P. L. Nielsen. „Phase-Strain Model for Polarimetric Strain Sensors Based on Fictitious Residual Strains“. Journal of Intelligent Material Systems and Structures 5, Nr. 4 (Juli 1994): 494–500. http://dx.doi.org/10.1177/1045389x9400500405.
Der volle Inhalt der QuelleKitagawa, Masayoshi, Tetsuyuki Onoda und Kazunobu Mizutani. „Stress-strain behaviour at finite strains for various strain paths in polyethylene“. Journal of Materials Science 27, Nr. 1 (Januar 1992): 13–23. http://dx.doi.org/10.1007/bf02403638.
Der volle Inhalt der QuelleMisic, Dusan, Zorica Stosic, Ferenc Kiskarolj, Vladica Adamov und Ruzica Asanin. „Investigations of multiresistance to antibiotics and chemotherapeutics and extended spectrum beta: Lactamase effect (ESBL test) in strains E.coli and salmonella originating from domestic animals“. Veterinarski glasnik 60, Nr. 1-2 (2006): 21–31. http://dx.doi.org/10.2298/vetgl0602021m.
Der volle Inhalt der QuelleBest, T. M., J. H. McElhaney, W. E. Garrett und B. S. Myers. „Axial Strain Measurements in Skeletal Muscle at Various Strain Rates“. Journal of Biomechanical Engineering 117, Nr. 3 (01.08.1995): 262–65. http://dx.doi.org/10.1115/1.2794179.
Der volle Inhalt der QuelleAyers, Jacob I., Anthony E. Kincaid und Jason C. Bartz. „Prion Strain Targeting Independent of Strain-Specific Neuronal Tropism“. Journal of Virology 83, Nr. 1 (29.10.2008): 81–87. http://dx.doi.org/10.1128/jvi.01745-08.
Der volle Inhalt der QuelleGlisson, Richard R., Douglas S. Musgrave, Robert D. Graham und Thomas P. Vail. „Validity of Photoelastic Strain Measurement on Cadaveric Proximal Femora“. Journal of Biomechanical Engineering 122, Nr. 4 (22.03.2000): 423–29. http://dx.doi.org/10.1115/1.1287162.
Der volle Inhalt der QuelleBressan, J. D., und J. A. Williams. „Limit strains in the sheet forming of strain and strain-rate sensitive materials“. Journal of Mechanical Working Technology 11, Nr. 3 (Juli 1985): 291–317. http://dx.doi.org/10.1016/0378-3804(85)90003-8.
Der volle Inhalt der QuelleDissertationen zum Thema "Strain"
Koob, Christopher E. „High temperature fiber optic strain sensing“. Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-02132009-171339/.
Der volle Inhalt der QuelleChen, Yuejian. „High-strain, high-strain-rate deformation of tantalum /“. Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1998. http://wwwlib.umi.com/cr/ucsd/fullcit?p9828890.
Der volle Inhalt der QuelleGosling, T. J. „Strain relaxation via dislocation formation in strained semiconductor structures“. Thesis, University of Bath, 1994. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387390.
Der volle Inhalt der QuellePani´c, Nebojsa. „High strain rate-induced failure in steels at high shear strains“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0006/MQ45106.pdf.
Der volle Inhalt der QuelleJulian, Michael Robert. „Material characterization of viscoelastic polymeric molding compounds“. Connect to resource, 1994. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1137616726.
Der volle Inhalt der QuelleAdvisors: Vernal H. Kenner and Carl H. Popelar, Dept. of Engineering Mechanics. Includes bibliographical references (leaf 106). Available online via OhioLINK's ETD Center
Smith, Byron L. „Mean strain effects on the strain life fatigue curve“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA267211.
Der volle Inhalt der QuelleLarour, Patrick [Verfasser]. „Strain rate sensitivity of automotive sheet steels: influence of plastic strain, strain rate, temperature, microstructure, bake hardening and pre-strain / vorgelegt von Patrick Larour“. Aachen : Shaker, 2010. http://d-nb.info/1007085649/34.
Der volle Inhalt der QuelleJavornik, Ana. „Tissue velocity, strain und strain rate bei Hunden mit Mitralklappenendokardiose“. Diss., [S.l.] : [s.n.], 2007. http://edoc.ub.uni-muenchen.de/archive/00007454.
Der volle Inhalt der QuelleBarraclough, Thomas William. „Strain softening and strain localisation in irreversible deformation of snow“. Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/16218.
Der volle Inhalt der QuelleMagoda, Cletus Mathew. „High strain-rate compressive strain of welded 300W asteel joints“. Thesis, Cape Peninsula University of Technology, 2011. http://hdl.handle.net/20.500.11838/1248.
Der volle Inhalt der QuelleThe split Hopkinson pressure bar (SHPB) test is the most commonly used method for determining material properties at high rates of strain. The theory governing the specifics of Hopkinson bar testing has been around for decades; however, it has only been for the last decade or so that significant data processing advancements have been made. It is the intent of this thesis to offer the insight of application of SHPB to determine the compressive dynamic behaviour for welded low carbon steel (mild steel). It also focuses on the tensile behaviour for unheat-treated and heat-treated welded carbon steel. The split Hopkinson Pressure bar apparatus consists of two long slender bars that sandwich a short cylindrical specimen between them. By striking the end of a bar, a compressive stress wave is generated that immediately begins to traverse towards the specimen. Upon arrival at the specimen, the wave partially reflects back towards the impact end. The remainder of the wave transmits through the specimen and into the second bar, causing irreversible plastic deformation in the specimen. It is shown that the reflected and transmitted waves are proportional to the specimen's strain rate and stress, respectively. Specimen strain can be determined by integrating the strain rate. By monitoring the strains in the two bars and the specimen's material, stress-strain properties can be calculated. Several factors influence the accuracy of the results, including the size and type of the data logger, impedance mismatch of the bars with the specimens, the utilization of the appropriate strain gauges and the strain amplifier properties, among others. A particular area of advancement is a new technique to determine the wave's velocity in the specimen with respect to change in medium and mechanical properties, and hence increasing the range of application of SHPB. It is shown that by choosing specimen dimensions based on their impedance, the transmitted stress signal-to-noise ratio can be improved. An in depth discussion of realistic expectations of strain gages is presented, along with closed form solutions validating any claims. The thesis concludes with an analysis of experimental and predicted results. Several recommendations and conclusions are made with regard to the results obtained and areas of improvement are suggested in order to achieve accurate and more meaningful results.
Bücher zum Thema "Strain"
L, Window A., Hrsg. Strain gauge technology. 2. Aufl. London: Elsevier Applied Science, 1992.
Den vollen Inhalt der Quelle findenChuck, Hogan, Hrsg. The strain. New York, NY: HarperLuxe, 2009.
Den vollen Inhalt der Quelle findenToro, Guillermo del. The Strain. New York: HarperCollins, 2009.
Den vollen Inhalt der Quelle finden1964-, Toro Guillermo del, Hogan Chuck, Huddleston Mike ill, Jackson Dan 1971- und Robins Clem, Hrsg. The strain. Milwaukie, Or: Dark Horse, 2013.
Den vollen Inhalt der Quelle findenWilliams, James A., Hrsg. Strain Engineering. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-197-0.
Der volle Inhalt der QuelleFreed, Alan David. Natural strain. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenToro, Guillermo del. The strain. New York, NY: Harper, 2009.
Den vollen Inhalt der Quelle findenCopyright Paperback Collection (Library of Congress), Hrsg. Mortal strain. New York, NY: Kensington Pub. Corp., 2002.
Den vollen Inhalt der Quelle findenToro, Guillermo del. The strain. London: Harper, 2010.
Den vollen Inhalt der Quelle findenChuck, Hogan, Hrsg. The strain. New York: William Morrow, 2009.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Strain"
Durgam, Roshni. „Adductor Strain (Groin Strain)“. In Musculoskeletal Sports and Spine Disorders, 237–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50512-1_52.
Der volle Inhalt der QuelleScaffidi, Thomas. „Strain“. In Weak-Coupling Theory of Topological Superconductivity, 89–104. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62867-7_5.
Der volle Inhalt der QuelleKeaton, Jeffrey R. „Strain“. In Selective Neck Dissection for Oral Cancer, 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12127-7_271-1.
Der volle Inhalt der QuelleLew Yan Voon, Lok C., und Morten Willatzen. „Strain“. In The k p Method, 167–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92872-0_7.
Der volle Inhalt der QuelleFreed, Alan D. „Strain“. In Soft Solids, 47–75. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03551-2_3.
Der volle Inhalt der QuelleGooch, Jan W. „Strain“. In Encyclopedic Dictionary of Polymers, 703. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11256.
Der volle Inhalt der QuelleBlackburn, James A. „Strain“. In Modern Instrumentation for Scientists and Engineers, 181–93. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0103-5_12.
Der volle Inhalt der QuelleGonzález-Velázquez, Jorge Luis. „Strain“. In Structural Integrity, 43–80. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29241-6_2.
Der volle Inhalt der QuellePodio-Guidugli, Paolo. „Strain“. In A Primer in Elasticity, 1–23. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-0594-3_1.
Der volle Inhalt der QuellePark, R. G. „Strain“. In Foundations of Structural Geology, 37–44. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-011-6576-1_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Strain"
Lo, Yu-Lung, Peter L. Nielsen und James S. Sirkis. „Phase-strain model for polarimetric strain sensors based on fictitious residual strains“. In 1994 North American Conference on Smart Structures and Materials, herausgegeben von James S. Sirkis. SPIE, 1994. http://dx.doi.org/10.1117/12.173978.
Der volle Inhalt der QuelleKlemm, H. „Reservoir Strain Changes from 4D Time-Strains“. In 80th EAGE Conference and Exhibition 2018. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800716.
Der volle Inhalt der QuelleIgi, Satoshi, Joe Kondo, Nobuhisa Suzuki, Joe Zhou und Da-Ming Duan. „Strain Capacity of X100 High-Strain Linepipe for Strain-Based Design Application“. In 2008 7th International Pipeline Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ipc2008-64518.
Der volle Inhalt der QuellePeelamedu, Saravanan M., Yunhe Yu, Kevin E. Molyet, Ganapathy Naganathan und Rao V. Dukkipati. „Strain transfer in an induced-strain actuator“. In 5th Annual International Symposium on Smart Structures and Materials, herausgegeben von Vasundara V. Varadan. SPIE, 1998. http://dx.doi.org/10.1117/12.316338.
Der volle Inhalt der QuelleTang, Huang, Doug Fairchild, Michele Panico, Justin Crapps und Wentao Cheng. „Strain Capacity Prediction of Strain-Based Pipelines“. In 2014 10th International Pipeline Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/ipc2014-33749.
Der volle Inhalt der QuelleTkaczyk, Tomasz, Daniil Vasilikis und Aurelien Pepin. „Effect of Pre-Strain on Bending Strain Capacity of Mechanically Lined Pipe“. In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18450.
Der volle Inhalt der QuelleDommann, Alex, und Antonia Neels. „X-Ray Strain Measurements In Strained Silicon Devices“. In STRESS MANAGEMENT FOR 3D ICS USING THROUGH SILICON VIAS: International Workshop on Stress Management for 3D ICs Using Through Silicon Vias. AIP, 2011. http://dx.doi.org/10.1063/1.3615700.
Der volle Inhalt der QuelleDonica, Thomas, Jonathan Gray und Ephraim F. Zegeye. „Strain Mapping and Large Strain Measurement Using Biaxial Skin Sensors“. In ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/smasis2019-5698.
Der volle Inhalt der QuelleRoths, Johannes, Andre Wilfert, Peter Kratzer, Florian Jülich und Rolf Kuttler. „Strain calibration of optical FBG-based strain sensors“. In (EWOFS'10) Fourth European Workshop on Optical Fibre Sensors, herausgegeben von José Luís Santos, Brian Culshaw, José Miguel López-Higuera und William N. MacPherson. SPIE, 2010. http://dx.doi.org/10.1117/12.866428.
Der volle Inhalt der QuelleSuzuki, Nobuhisa, Joe Kondo, Nobuyuki Ishikawa, Mitsuru Okatsu und Junji Shimamura. „Strain Capacity of X80 High-Strain Line Pipes“. In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29505.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Strain"
Keating, Jessica N., Brittney Patterson, Roberta Speir, Caroline Wiswell und Luz Aceves Gonzalez. Strain Specific: Microbial Strains Involved in Gut-Brain Signaling. Journal of Young Investigators, August 2017. http://dx.doi.org/10.22186/jyi.33.3.49-54.
Der volle Inhalt der QuelleWang und Cheng. L52193 Guidelines on Tensile Strain Limits. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2004. http://dx.doi.org/10.55274/r0011134.
Der volle Inhalt der QuelleMohr. L52241 Strain-Based Design - Strain Concentration at Girth Welds. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Dezember 2006. http://dx.doi.org/10.55274/r0010386.
Der volle Inhalt der QuelleWang, Yong-Yi. PR-350-174500-R02 Characterization of Pipeline Wall Loss for Strain Capacity. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 2019. http://dx.doi.org/10.55274/r0011552.
Der volle Inhalt der QuelleWang und Cheng. L52020 Extension of Strain Design Criteria to Buried HAZ Defects. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 2004. http://dx.doi.org/10.55274/r0011103.
Der volle Inhalt der QuelleGlazer, Itamar, Randy Gaugler, Daniel Segal, Parwinder Grewal, Yitzhak Spiegel und Senthamizh Selvan. Genetic Enhancement of Environmental Stability and Efficacy of Entomopathogenic Nematodes for Biological Control. United States Department of Agriculture, August 1995. http://dx.doi.org/10.32747/1995.7695833.bard.
Der volle Inhalt der QuelleVeyera, George E. Uniaxial Stress-Strain Behavior of Unsaturated Soils at High Strain Rates. Fort Belvoir, VA: Defense Technical Information Center, April 1994. http://dx.doi.org/10.21236/ada284026.
Der volle Inhalt der QuelleBrayton, Kelly A., Varda Shkap, Guy H. Palmer, Wendy C. Brown und Thea Molad. Control of Bovine Anaplasmosis: Protective Capacity of the MSP2 Allelic Repertoire. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7699838.bard.
Der volle Inhalt der QuelleHolden, T., R. Hosbons und J. Root. CWI1988-Andi-21 Neutron Diffraction of Axial Residual Strains Near a Circumferential Crack. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 1989. http://dx.doi.org/10.55274/r0011391.
Der volle Inhalt der QuelleKllinski, T., D. Stephens und R. Davis. PR-3-9408-R01 Strain Gage Instrumentation of the GRI Pipeline Simulation Facility Flow Loop. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Oktober 1996. http://dx.doi.org/10.55274/r0011410.
Der volle Inhalt der Quelle