Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Straightness measurement“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Straightness measurement" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Straightness measurement"
Vekteris, Vladas, Mindaugas Jurevicius und Vytautas Turla. „Optical device for straightness measurement“. Applied Physics B 121, Nr. 2 (21.09.2015): 203–8. http://dx.doi.org/10.1007/s00340-015-6219-5.
Der volle Inhalt der QuellePan, Xiao Bin, und Yang Pan. „Design of a Straightness Measurement Device for the Slider's Motion of the Press“. Applied Mechanics and Materials 201-202 (Oktober 2012): 686–91. http://dx.doi.org/10.4028/www.scientific.net/amm.201-202.686.
Der volle Inhalt der QuelleLiu, C. H., Y.-R. Jeng, W. Y. Jywe, S.-Y. Deng und T.-H. Hsu. „Automatic straightness measurement of a linear guide using a real-time straightness self-compensating scanning stage“. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 223, Nr. 9 (22.05.2009): 1171–79. http://dx.doi.org/10.1243/09544054jem1319.
Der volle Inhalt der QuelleArai, Yoshikazu, Wei Gao, S. Kiyono und Tsunemoto Kuriyagawa. „Measurement of the Straightness of a Leadscrew-Driven Precision Stage“. Key Engineering Materials 295-296 (Oktober 2005): 259–64. http://dx.doi.org/10.4028/www.scientific.net/kem.295-296.259.
Der volle Inhalt der QuelleKOMIYAMA, Takuya, Hiroshi SAWANO, Hayato YOSHIOKA und Hidenori SHINNO. „B005 A Long-Range Straightness Measurement with Motion Error Compensation“. Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2013.7 (2013): 173–76. http://dx.doi.org/10.1299/jsmelem.2013.7.173.
Der volle Inhalt der QuelleWADA, Hisashi, Hideo SAKUMA und Koichi TABE. „Straightness measurement using heterodyne moire method.“ Journal of the Japan Society of Precision Engineering 51, Nr. 5 (1985): 984–89. http://dx.doi.org/10.2493/jjspe1933.51.984.
Der volle Inhalt der QuelleZhang, G. X., X. H. Chu, W. Tang und Z. Z. Jin. „Distance-Distance Method for Straightness Measurement“. CIRP Annals 41, Nr. 1 (1992): 581–84. http://dx.doi.org/10.1016/s0007-8506(07)61273-6.
Der volle Inhalt der QuelleAI, Xiaoyong, Tsuyoshi SHIMIZU und Makoto OBI. „Straightness Measurement Using Improved Reversal Method.“ Journal of the Japan Society for Precision Engineering 66, Nr. 10 (2000): 1578–82. http://dx.doi.org/10.2493/jjspe.66.1578.
Der volle Inhalt der QuelleOkuyama, Eiki, Shingo Asano, Yuichi Suzuki und Hiromi Ishikawa. „Generalized Two-Point Method for Straightness Profile Measurement - Error Propagation and Experimental Results“. Advanced Materials Research 939 (Mai 2014): 600–606. http://dx.doi.org/10.4028/www.scientific.net/amr.939.600.
Der volle Inhalt der QuelleOsawa, Sonko, Osamu Sato und Toshiyuki Takatsuji. „Multiple Measurement Techniques for Coordinate Metrology“. Key Engineering Materials 381-382 (Juni 2008): 93–94. http://dx.doi.org/10.4028/www.scientific.net/kem.381-382.93.
Der volle Inhalt der QuelleDissertationen zum Thema "Straightness measurement"
Pavelescu, Alina, Victor Eriksson, Kevin Hammar, Oliver Hjort, Love Rudebeck, Joanna Stålenheim und Maria Wojtowicz. „Tube straightness measurement : Independent Project in Chemical and Materials Engineering“. Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-354750.
Der volle Inhalt der QuelleBorisov, Oleg. „New optical sensing system applied to taut wire based straightness measurement“. Thesis, University of Huddersfield, 2015. http://eprints.hud.ac.uk/id/eprint/24846/.
Der volle Inhalt der QuelleZatočilová, Aneta. „Měření a vyhodnocování přímosti osy rotačních výkovků pomocí fotogrammetrie a analýzy obrazu“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-234252.
Der volle Inhalt der QuelleBelhadj, Ahmed Abdelwahed. „Contribution à l’amélioration de la rectitude dans l’obtention de produits longs : application aux abouts de rails“. Thesis, Paris, ENSAM, 2013. http://www.theses.fr/2013ENAM0066/document.
Der volle Inhalt der QuelleLong workpieces are characterized by one dimension, usually length is larger than the height and width, for example, railway rails. These products are obtained by hot rolling and then cooling. During manufacturing process, heterogeneity of cooling and plastic deformation induced straightness error. In order to correct this geometrical error, cold straightening process is necessary. Usually, straightening machines are used to correct the straightness of the workpiece center however; the ends' sides were still not straightened. Based on the optical measurement profile, these ends are straightened by mechanical press. The measuring/straightening closed loop is repeated until the straightness of the product is conformed. The process time depends on the knowledge of key parameters related to geometry and material of workpiece. The objective of this research work is to optimize straightening process of the ends of long workpieces. As a first step, the elastic deformation generated during the measurement of long workpiece has been filtered. Then, a coupled analysis of measurement was used to separate error of machine measurement from workpiece measurement, which allowed a better assessment of workpiece straightness profile. Furthermore, based on straightness profile, a semi-automatic straightening methodology has been developed. It is essentially based on an interaction between metrology and mechanics and it is a contribution to the automation of straightening process for ends parts of long workpieces
Únar, Jan. „Posouzení geometrické přesnosti obráběcího centra pomocí digitálních inklinometrů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444307.
Der volle Inhalt der QuellePaziani, Fabricio Tadeu. „Desenvolvimento de um sistema automatizado e dedicado de medição“. Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/18/18135/tde-21092015-102558/.
Der volle Inhalt der QuelleDedicated measuring systems are particularly recommended for the repetitive inspection of a mechanical feature. However, measuring instruments and systems present errors that deteriorate the result of the inspection. Such a circumstance demands the application of error separation techniques that perform decoupling of errors induced by the measuring system from part errors. This work aims to present an automated measuring system that is dedicated to the task of inspecting straightness and roundness errors in mechanical components. An industrial robot was employed to operate specific measuring devices for each measurement. However, industrial robots present relatively large positioning errors that prevent the use of their coordinate system as a reference to accurate measurements. In order to minimize the effect of the measuring system on the measured value, multi-probe error separation techniques were employed. On the straightness measurement, a new approach was developed to minimize the influence of the axial positioning error of the sensors, which consist of the major error source on the decoupling process. Computational simulations and experimental straightness and roundness tests were accomplished for various artefacts, which confirmed the effectiveness of the employed methodology.
Cai, Jhih-Sian, und 蔡志賢. „On-line Measurement for the Straightness and Angular Motions On the linear axis“. Thesis, 2010. http://ndltd.ncl.edu.tw/handle/hs725q.
Der volle Inhalt der Quelle國立虎尾科技大學
光電與材料科技研究所
98
An integrated system for measuring optical path is designed and developed in this research. This system involves two straightness measuring modules adopting collimation invisible light LEDs with a 1D bi-cell detector to estimate the pitch and the yaw of a precision platform, and one angle measuring module with an optical pickup head and a 2D quadrant detector to probe the roll of the precision platform. The system is used directly to a translational platform and is shown to be easily-fabricated and quickly-measuring to support real-time operation through applying the elements to a mobile platform. The experimental Results can be examined by both of the straightness measuring system of HP laser interferometer and the angle measuring system of a Laser Autocollimator.
Chen, Jhih-Sheng, und 陳志昇. „The Embedded System Design with Wireless Data Capture and Straightness Measurements Applied in the Precise Machine Tools Measurement“. Thesis, 2015. http://ndltd.ncl.edu.tw/handle/88j473.
Der volle Inhalt der Quelle國立虎尾科技大學
資訊工程系碩士班
104
With the advance of science and technology, the inspection and error analysis methods of the mainframe platforms are more important than before. In particular, the correction method of assembly mainframe platform is limited by the traditional length and precision of the right angle specification. Normally, those electrical levels, laser interferometers and collimators are utilized to perform verification or inspection of straightness, squareness and parallelism. The most commonly laser collimator is applied in this study that is for verification or inspection of mainframe platform in industry. Additionally, the Quadrant Detector (QD) is utilized as the source of signal, and display the result of embedded system and signal analysis to Android mobile device. This system implements four parts. The first part is analog signal processing .It reads analog signal from QD, then translate and amplificate analog signal from output by OPA. It also uses ADC converter of SPI for translating the analog signal to digital signal. The second part is digital computing and analysis. This system uses K60 MCU (NXP Inc.). The K60 MCU has functionalities like SPI access, straightness measurement and analysis, SD card access, Wi-Fi module, LCD module and so on. This part also does Bootloader''s research for the convenience of updating firmware. The third part is a dongle based on PC. It uses K60 to control EZ-USB FX2 USB (Cypress Inc.), and communicates with PC program by USB. The Final part is UI for straightness testing. For various environments, this system provides android mobile app and PC app. In android mobile app, it reads packet from socket of TCP/IP. In PC app, it uses WinDriver to develop Windows and Linux USB driver for reading a alrge of data from PC dongle. By this research of precise machine tools measurement of wireless data capture and straightness measurements on intelligence embedded system, the system can provide industry an application of precise inspection in mainframe platform that can upgrade the skill of precise machine tools measurement and help the development of relative business. In the future, the inspection of squareness and parallelism will be combined this study.
Buchteile zum Thema "Straightness measurement"
Yin, Zi Qiang, S. To und Ling Bao Kong. „Novel Error Separation Method for Straightness Measurement“. In Optics Design and Precision Manufacturing Technologies, 572–77. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-458-8.572.
Der volle Inhalt der QuelleArai, Yoshikazu, Wei Gao, S. Kiyono und Tsunemoto Kuriyagawa. „Measurement of the Straightness of a Leadscrew-Driven Precision Stage“. In Key Engineering Materials, 259–64. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-977-6.259.
Der volle Inhalt der QuelleGonzález, Rafael C., Raul Valdés und Jose A. Cancelas. „Vision Based Measurement System to Quantify Straightness Defect in Steel Sheets“. In Computer Analysis of Images and Patterns, 427–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44692-3_52.
Der volle Inhalt der QuelleGao, Wei, J. Yokoyama, S. Kiyono und N. Hitomi. „A Scanning Multi-Probe Straightness Measurement System for Alignment of Linear Collider Accelerator“. In Key Engineering Materials, 253–58. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-977-6.253.
Der volle Inhalt der Quelle„Scanning Error Separation System for Measurement of Straightness“. In Springer Series in Advanced Manufacturing, 175–210. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-254-4_6.
Der volle Inhalt der QuelleShengyi, Li, und Liang Cheng. „The Optimum EST-A New Method for On-line Measurement of the Straightness of Precision Machine Tools and Machined Workpiece“. In International Progress in Precision Engineering, 451–59. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-7506-9484-1.50053-1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Straightness measurement"
Wu, Xuhua, Lei Chen und Jiaofen Sun. „Straightness error measurement of horizontal slideway“. In 2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies, herausgegeben von Xun Hou, Jiahu Yuan, James C. Wyant, Hexin Wang und Sen Han. SPIE, 2006. http://dx.doi.org/10.1117/12.676720.
Der volle Inhalt der QuelleTenjimbayashi, Koji, und Hiromitsu Furukawa. „Straightness measurement of a linear stage“. In 19th Congress of the International Commission for Optics: Optics for the Quality of Life, herausgegeben von Giancarlo C. Righini und Anna Consortini. SPIE, 2003. http://dx.doi.org/10.1117/12.531102.
Der volle Inhalt der QuelleUchikoshi, Junichi, Shoichi Shimada, Naoya Ikawa und Akio Komura. „Straightness measurement using laser beam straight datum“. In International Conferences on Optical Fabrication and Testing and Applications of Optical Holography, herausgegeben von Toshio Kasai. SPIE, 1995. http://dx.doi.org/10.1117/12.215602.
Der volle Inhalt der QuelleLiang, Jian C., Shengyi Li und Shuzi Yang. „Problems and solution methods for on-line measuring straightness“. In Measurement Technology and Intelligent Instruments, herausgegeben von Li Zhu. SPIE, 1993. http://dx.doi.org/10.1117/12.156358.
Der volle Inhalt der QuelleHe, Mingzhao, Xiaoyou Ye, Jianshuang Li und Xiaochuan Gan. „Evaluation of Spatial Straightness Error using LaserTRACER“. In International Symposium on Precision Engineering Measurement and Instrumentation 2012, herausgegeben von Jie Lin. SPIE, 2013. http://dx.doi.org/10.1117/12.2014642.
Der volle Inhalt der QuelleLiu, Zhao, Chunchen Dong, Yun Pei und Jianyi Kong. „Online Rail Straightness Measurement Based on Parallel Computing“. In 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015). Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/ic3me-15.2015.215.
Der volle Inhalt der QuelleWeiming, Cheng, Zhang Weina, Song Wei, Liu Liang und Sun Guiqing. „Straightness Measurement for Long-length Rails of Bridge Crane“. In 2011 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, 2011. http://dx.doi.org/10.1109/icmtma.2011.659.
Der volle Inhalt der QuelleLiu, Weihua, Qibo Feng und Cunxing Cui. „The application of fiber-coupled LED in straightness measurement“. In International Conference on Optical Instruments and Technology 2015, herausgegeben von Jigui Zhu, Hwa-Yaw Tam, Kexin Xu, Hai Xiao und Sen Han. SPIE, 2015. http://dx.doi.org/10.1117/12.2193410.
Der volle Inhalt der QuelleHuang, Pei, Yan Li und Haoyun Wei. „Straightness measurement system based on phase sensitive detection technique“. In International Conference on Optical Instruments and Technology (OIT2013), herausgegeben von Hwa-Yaw Tam, Kexin Xu, Hai Xiao, Jigui Zhu und Chun-Liu Zhao. SPIE, 2013. http://dx.doi.org/10.1117/12.2036576.
Der volle Inhalt der QuelleShi, Wang-Yuan, Chun-Hai Wang und Qi-Chang Cheng. „On-line high precision intelligent measurement of straightness based on dense sampling“. In Measurement Technology and Intelligent Instruments, herausgegeben von Li Zhu. SPIE, 1993. http://dx.doi.org/10.1117/12.156338.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Straightness measurement"
Bundy, Mark, Jim Garner, Mark L. Kregel und Mark D. Kregel. A Barrel Straightness Measurement System for Medium Caliber. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada473697.
Der volle Inhalt der Quelle