Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Stochastic Fokker-Planck“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Stochastic Fokker-Planck" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Stochastic Fokker-Planck"
Liu, Chang, Chuo Chang und Zhe Chang. „Distribution of Return Transition for Bohm-Vigier Stochastic Mechanics in Stock Market“. Symmetry 15, Nr. 7 (17.07.2023): 1431. http://dx.doi.org/10.3390/sym15071431.
Der volle Inhalt der QuelleCoghi, Michele, und Benjamin Gess. „Stochastic nonlinear Fokker–Planck equations“. Nonlinear Analysis 187 (Oktober 2019): 259–78. http://dx.doi.org/10.1016/j.na.2019.05.003.
Der volle Inhalt der QuelleChavanis, Pierre-Henri. „Generalized Stochastic Fokker-Planck Equations“. Entropy 17, Nr. 5 (13.05.2015): 3205–52. http://dx.doi.org/10.3390/e17053205.
Der volle Inhalt der QuelleLin, Y. K., und G. Q. Cai. „Equivalent Stochastic Systems“. Journal of Applied Mechanics 55, Nr. 4 (01.12.1988): 918–22. http://dx.doi.org/10.1115/1.3173742.
Der volle Inhalt der QuelleKOTELENEZ, PETER M. „A QUASI-LINEAR STOCHASTIC FOKKER–PLANCK EQUATION IN σ-FINITE MEASURES“. Stochastics and Dynamics 08, Nr. 03 (September 2008): 475–504. http://dx.doi.org/10.1142/s021949370800241x.
Der volle Inhalt der QuelleSun, Xu, Xiaofan Li und Yayun Zheng. „Governing equations for probability densities of Marcus stochastic differential equations with Lévy noise“. Stochastics and Dynamics 17, Nr. 05 (23.09.2016): 1750033. http://dx.doi.org/10.1142/s0219493717500332.
Der volle Inhalt der QuelleHirpara, Ravish Himmatlal, und Shambhu Nath Sharma. „An Analysis of a Wind Turbine-Generator System in the Presence of Stochasticity and Fokker-Planck Equations“. International Journal of System Dynamics Applications 9, Nr. 1 (Januar 2020): 18–43. http://dx.doi.org/10.4018/ijsda.2020010102.
Der volle Inhalt der QuelleAnnunziato, Mario, und Alfio Borzì. „OPTIMAL CONTROL OF PROBABILITY DENSITY FUNCTIONS OF STOCHASTIC PROCESSES“. Mathematical Modelling and Analysis 15, Nr. 4 (15.11.2010): 393–407. http://dx.doi.org/10.3846/1392-6292.2010.15.393-407.
Der volle Inhalt der QuelleANNUNZIATO, M., und A. BORZI. „FOKKER–PLANCK-BASED CONTROL OF A TWO-LEVEL OPEN QUANTUM SYSTEM“. Mathematical Models and Methods in Applied Sciences 23, Nr. 11 (23.07.2013): 2039–64. http://dx.doi.org/10.1142/s0218202513500255.
Der volle Inhalt der QuelleRENNER, CHRISTOPH, J. PEINKE und R. FRIEDRICH. „Experimental indications for Markov properties of small-scale turbulence“. Journal of Fluid Mechanics 433 (25.04.2001): 383–409. http://dx.doi.org/10.1017/s0022112001003597.
Der volle Inhalt der QuelleDissertationen zum Thema "Stochastic Fokker-Planck"
Adesina, Owolabi Abiona. „Statistical Modelling and the Fokker-Planck Equation“. Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-1177.
Der volle Inhalt der QuelleGuillouzic, Steve. „Fokker-Planck approach to stochastic delay differential equations“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ58279.pdf.
Der volle Inhalt der QuelleNoble, Patrick. „Stochastic processes in Astrophysics“. Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10013.
Der volle Inhalt der QuelleLi, Wuchen. „A study of stochastic differential equations and Fokker-Planck equations with applications“. Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54999.
Der volle Inhalt der QuelleMiserocchi, Andrea. „The Fokker-Planck equation as model for the stochastic gradient descent in deep learning“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18290/.
Der volle Inhalt der QuelleЮщенко, Ольга Володимирівна, Ольга Владимировна Ющенко, Olha Volodymyrivna Yushchenko, Тетяна Іванівна Жиленко, Татьяна Ивановна Жиленко und Tetiana Ivanivna Zhylenko. „Description of the Stochastic Condensation Process under Quasi-Equilibrium Conditions“. Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/34910.
Der volle Inhalt der QuelleДенисов, Станіслав Іванович, Станислав Иванович Денисов, Stanislav Ivanovych Denysov, V. V. Reva und O. O. Bondar. „Generalized Fokker-Planck Equation for the Nanoparticle Magnetic Moment Driven by Poisson White Noise“. Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35373.
Der volle Inhalt der QuelleLi, Yao. „Stochastic perturbation theory and its application to complex biological networks -- a quantification of systematic features of biological networks“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/49013.
Der volle Inhalt der QuelleVellmer, Sebastian. „Applications of the Fokker-Planck Equation in Computational and Cognitive Neuroscience“. Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21597.
Der volle Inhalt der QuelleThis thesis is concerned with the calculation of statistics, in particular the power spectra, of point processes generated by stochastic multidimensional integrate-and-fire (IF) neurons, networks of IF neurons and decision-making models from the corresponding Fokker-Planck equations. In the brain, information is encoded by sequences of action potentials. In studies that focus on spike timing, IF neurons that drastically simplify the spike generation have become the standard model. One-dimensional IF neurons do not suffice to accurately model neural dynamics, however, the extension towards multiple dimensions yields realistic behavior at the price of growing complexity. The first part of this work develops a theory of spike-train power spectra for stochastic, multidimensional IF neurons. From the Fokker-Planck equation, a set of partial differential equations is derived that describes the stationary probability density, the firing rate and the spike-train power spectrum. In the second part of this work, a mean-field theory of large and sparsely connected homogeneous networks of spiking neurons is developed that takes into account the self-consistent temporal correlations of spike trains. Neural input is approximated by colored Gaussian noise generated by a multidimensional Ornstein-Uhlenbeck process of which the coefficients are initially unknown but determined by the self-consistency condition and define the solution of the theory. To explore heterogeneous networks, an iterative scheme is extended to determine the distribution of spectra. In the third part, the Fokker-Planck equation is applied to calculate the statistics of sequences of binary decisions from diffusion-decision models (DDM). For the analytically tractable DDM, the statistics are calculated from the corresponding Fokker-Planck equation. To determine the statistics for nonlinear models, the threshold-integration method is generalized.
Sjöberg, Paul. „Numerical Methods for Stochastic Modeling of Genes and Proteins“. Doctoral thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8293.
Der volle Inhalt der QuelleBücher zum Thema "Stochastic Fokker-Planck"
Frank, T. D. Nonlinear Fokker-Planck equations: Fundamentals and applications. Berlin: Springer, 2004.
Den vollen Inhalt der Quelle findenGrasman, Johan. Asymptotic methods for the Fokker-Planck equation and the exit problem in applications. Berlin: Springer, 1999.
Den vollen Inhalt der Quelle findenChirikjian, Gregory S. Stochastic models, information theory, and lie groups. Boston: Birkhäuser, 2009.
Den vollen Inhalt der Quelle findenFokker-Planck-Kolmogorov equations. Providence, Rhode Island: American Mathematical Society, 2015.
Den vollen Inhalt der Quelle findenKrylov, Nicolai V., Michael Rockner, Vladimir I. Bogachev und Stanislav V. Shaposhnikov. Fokker-Planck-Kolmogorov Equations. American Mathematical Society, 2015.
Den vollen Inhalt der Quelle findenNonlinear Fokker-Planck equations: Fundamentals and applications. Berlin: Springer, 2005.
Den vollen Inhalt der Quelle findenPavliotis, Grigorios A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer, 2014.
Den vollen Inhalt der Quelle findenPavliotis, Grigorios A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer, 2016.
Den vollen Inhalt der Quelle findenPavliotis, Grigorios A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer London, Limited, 2014.
Den vollen Inhalt der Quelle findenMcClintock, P. V. E., und Frank Moss. Noise in Nonlinear Dynamical Systems Vol. 1: Theory of Continuous Fokker-Planck Systems. Cambridge University Press, 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Stochastic Fokker-Planck"
Loos, Sarah A. M. „Fokker-Planck Equations“. In Stochastic Systems with Time Delay, 77–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80771-9_3.
Der volle Inhalt der QuelleLoos, Sarah A. M. „Infinite Fokker-Planck Hierarchy“. In Stochastic Systems with Time Delay, 121–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80771-9_5.
Der volle Inhalt der QuelleRodean, Howard C. „The Fokker-Planck Equation“. In Stochastic Lagrangian Models of Turbulent Diffusion, 19–24. Boston, MA: American Meteorological Society, 1996. http://dx.doi.org/10.1007/978-1-935704-11-9_5.
Der volle Inhalt der QuelleQian, Hong, und Hao Ge. „Stochastic Processes, Fokker-Planck Equation“. In Encyclopedia of Systems Biology, 2000–2004. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_279.
Der volle Inhalt der QuelleBogachev, Vladimir I. „Stationary Fokker–Planck–Kolmogorov Equations“. In Stochastic Partial Differential Equations and Related Fields, 3–24. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74929-7_1.
Der volle Inhalt der QuelleDa Prato, Giuseppe. „Fokker–Planck Equations in Hilbert Spaces“. In Stochastic Partial Differential Equations and Related Fields, 101–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74929-7_5.
Der volle Inhalt der QuelleMöhl, Dieter. „The Distribution Function and Fokker-Planck Equations“. In Stochastic Cooling of Particle Beams, 91–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34979-9_7.
Der volle Inhalt der QuelleCarmichael, Howard J. „Fokker—Planck Equations and Stochastic Differential Equations“. In Statistical Methods in Quantum Optics 1, 147–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03875-8_5.
Der volle Inhalt der QuelleShaposhnikov, Stanislav V. „Nonlinear Fokker–Planck–Kolmogorov Equations for Measures“. In Stochastic Partial Differential Equations and Related Fields, 367–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74929-7_24.
Der volle Inhalt der QuelleYoshida, T., und S. Yanagita. „A Stochastic Simulation Method for Fokker-Planck Equations“. In Numerical Astrophysics, 399–400. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4780-4_121.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Stochastic Fokker-Planck"
Metzler, Ralf. „From the Langevin equation to the fractional Fokker–Planck equation“. In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302409.
Der volle Inhalt der QuelleHolliday, G. S., und Surendra Singh. „Second harmonic generation in the positive P-representation“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.wr6.
Der volle Inhalt der QuelleAllison, A. „Stochastic Resonance, Brownian Ratchets and the Fokker-Planck Equation“. In UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS: UPoN 2002: Third International Conference on Unsolved Problems of Noise and Fluctuations in Physics, Biology, and High Technology. AIP, 2003. http://dx.doi.org/10.1063/1.1584877.
Der volle Inhalt der QuelleWedig, Walter V., und Utz von Wagner. „Stochastic Car Vibrations With Strong Nonlinearities“. In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21605.
Der volle Inhalt der QuelleWang, Yan. „Simulating Drift-Diffusion Processes With Generalized Interval Probability“. In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70699.
Der volle Inhalt der QuelleClaussen, Jens Christian. „Discrete stochastic processes, replicator and Fokker-Planck equations of coevolutionary dynamics in finite and infinite populations“. In Stochastic Models in Biological Sciences. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc80-0-1.
Der volle Inhalt der QuelleKumar, Mrinal, Suman Chakravorty und John Junkins. „Computational Nonlinear Stochastic Control Based on the Fokker-Planck-Kolmogorov Equation“. In AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-6477.
Der volle Inhalt der QuelleHorowicz, R. J., und L. A. Lugiato. „Noise Effects In Optical Bistability“. In Instabilities and Dynamics of Lasers and Nonlinear Optical Systems. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/idlnos.1985.wd2.
Der volle Inhalt der QuelleKikuchi, T., S. Kawata und T. Katayama. „Numerical solver with cip method for Fokker Planck equation of stochastic cooling“. In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440417.
Der volle Inhalt der QuelleDas, Shreepriya, Haris Vikalo und Arjang Hassibi. „Stochastic modeling of reaction kinetics in biosensors using the Fokker Planck equation“. In 2009 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS). IEEE, 2009. http://dx.doi.org/10.1109/gensips.2009.5174363.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Stochastic Fokker-Planck"
Marriner, John. Simulations of Transverse Stochastic Cooling Using the Fokker-Planck Equation. Office of Scientific and Technical Information (OSTI), März 1998. http://dx.doi.org/10.2172/1985058.
Der volle Inhalt der QuelleKumar, Manish, und Subramanian Ramakrishnan. Modeling and Analysis of Stochastic Dynamics and Emergent Phenomena in Swarm Robotic Systems Using the Fokker-Planck Formalism. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2010. http://dx.doi.org/10.21236/ada547014.
Der volle Inhalt der QuelleYu, D., und S. Chakravorty. A Multi-Resolution Approach to the Fokker-Planck-Kolmogorov Equation with Application to Stochastic Nonlinear Filtering and Optimal Design. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2012. http://dx.doi.org/10.21236/ada582272.
Der volle Inhalt der QuelleSnyder, Victor A., Dani Or, Amos Hadas und S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, April 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Der volle Inhalt der Quelle