Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Stochastic Differential Equations (SDE)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Stochastic Differential Equations (SDE)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Stochastic Differential Equations (SDE)"
Eliazar, Iddo. „Selfsimilar stochastic differential equations“. Europhysics Letters 136, Nr. 4 (01.11.2021): 40002. http://dx.doi.org/10.1209/0295-5075/ac4dd4.
Der volle Inhalt der QuelleIddrisu, Wahab A., Inusah Iddrisu und Abdul-Karim Iddrisu. „Modeling Cholera Epidemiology Using Stochastic Differential Equations“. Journal of Applied Mathematics 2023 (09.05.2023): 1–17. http://dx.doi.org/10.1155/2023/7232395.
Der volle Inhalt der QuelleIMKELLER, PETER, und CHRISTIAN LEDERER. „THE COHOMOLOGY OF STOCHASTIC AND RANDOM DIFFERENTIAL EQUATIONS, AND LOCAL LINEARIZATION OF STOCHASTIC FLOWS“. Stochastics and Dynamics 02, Nr. 02 (Juni 2002): 131–59. http://dx.doi.org/10.1142/s021949370200039x.
Der volle Inhalt der QuelleBriand, Phillippe, Abir Ghannoum und Céline Labart. „Mean reflected stochastic differential equations with jumps“. Advances in Applied Probability 52, Nr. 2 (Juni 2020): 523–62. http://dx.doi.org/10.1017/apr.2020.11.
Der volle Inhalt der QuelleArmstrong, J., und D. Brigo. „Intrinsic stochastic differential equations as jets“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, Nr. 2210 (Februar 2018): 20170559. http://dx.doi.org/10.1098/rspa.2017.0559.
Der volle Inhalt der QuelleBahlali, K., A. Elouaflin und M. N'zi. „Backward stochastic differential equations with stochastic monotone coefficients“. Journal of Applied Mathematics and Stochastic Analysis 2004, Nr. 4 (01.01.2004): 317–35. http://dx.doi.org/10.1155/s1048953304310038.
Der volle Inhalt der QuelleRezaeyan, Ramzan. „Application of Stochastic Differential Equation and Optimal Control for Engineering Problems“. Advanced Materials Research 383-390 (November 2011): 972–75. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.972.
Der volle Inhalt der QuelleFekete, Dorottya, Joaquin Fontbona und Andreas E. Kyprianou. „Skeletal stochastic differential equations for superprocesses“. Journal of Applied Probability 57, Nr. 4 (23.11.2020): 1111–34. http://dx.doi.org/10.1017/jpr.2020.53.
Der volle Inhalt der QuelleStoyanov, Jordan, und Dobrin Botev. „Quantitative results for perturbed stochastic differential equations“. Journal of Applied Mathematics and Stochastic Analysis 9, Nr. 3 (01.01.1996): 255–61. http://dx.doi.org/10.1155/s104895339600024x.
Der volle Inhalt der QuelleChaharpashlou, Reza, Reza Saadati und António M. Lopes. „Fuzzy Mittag–Leffler–Hyers–Ulam–Rassias Stability of Stochastic Differential Equations“. Mathematics 11, Nr. 9 (04.05.2023): 2154. http://dx.doi.org/10.3390/math11092154.
Der volle Inhalt der QuelleDissertationen zum Thema "Stochastic Differential Equations (SDE)"
Nass, Aminu Ma'aruf. „Point symmetry methods for Itô Stochastic Differential Equations (SDE) with a finite jump process“. Doctoral thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/25387.
Der volle Inhalt der QuelleHandari, Bevina D. „Numerical methods for SDEs and their dynamics /“. [St. Lucia, Qld.], 2002. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17145.pdf.
Der volle Inhalt der QuelleSalhi, Rym. „Contributions to quadratic backward stochastic differential equations with jumps and applications“. Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1023.
Der volle Inhalt der QuelleThis thesis focuses on backward stochastic differential equation with jumps and their applications. In the first chapter, we study a backward stochastic differential equation (BSDE for short) driven jointly by a Brownian motion and an integer valued random measure that may have infinite activity with compensator being possibly time inhomogeneous. In particular, we are concerned with the case where the driver has quadratic growth and unbounded terminal condition. The existence and uniqueness of the solution are proven by combining a monotone approximation technics and a forward approach. Chapter 2 is devoted to the well-posedness of generalized doubly reflected BSDEs (GDRBSDE for short) with jumps under weaker assumptions on the data. In particular, we study the existence of a solution for a one-dimensional GDRBSDE with jumps when the terminal condition is only measurable with respect to the related filtration and when the coefficient has general stochastic quadratic growth. We also show, in a suitable framework, the connection between our class of backward stochastic differential equations and risk sensitive zero-sum game. In chapter 3, we investigate a general class of fully coupled mean field forward-backward under weak monotonicity conditions without assuming any non-degeneracy assumption on the forward equation. We derive existence and uniqueness results under two different sets of conditions based on proximation schema weither on the forward or the backward equation. Later, we give an application for storage in smart grids
Alnafisah, Yousef Ali. „First-order numerical schemes for stochastic differential equations using coupling“. Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/20420.
Der volle Inhalt der QuelleManai, Arij. „Some contributions to backward stochastic differential equations and applications“. Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1022.
Der volle Inhalt der QuelleThis thesis is dedicated to the study of backward stochastic differential equations (BSDEs) and their applications. In chapter 1, we study the problem of maximizing the utility from terminal wealth where the stock price may jump and there are investment constraints on the agent 's strategies. We focus on the BSDE whose solution represents the maximal utility, which allows transferring results on quadratic BSDEs, in particular the stability results, to the problem of utility maximisation. In chapter 2, we consider the problem of pricing American options from theoretical and numerical sides based upon an alternative representation of the value of the option in the form of a viscosity solution of a parabolic equation with a nonlinear reaction term. We extend the viscosity solution characterization proved in [Benth, Karlsen and Reikvam 2003] for call/put American option prices to the case of a general payoff function in a multi-dimensional setting. We address two new numerical schemes inspired by the branching processes. Our numerical experiments show that approximating the discontinuous driver of the associated reaction/diffusion PDE by local polynomials is not efficient, while a simple randomization procedure provides very good results. In chapter 3, we prove existence and uniqueness results for a general class of coupled mean-field forward-backward SDEs with jumps under weak monotonicity conditions and without the non-degeneracy assumption on the forward equation and we give an application in the field of storage in smart grids in the case where the production of electricity is unpredictable
Leahy, James-Michael. „On parabolic stochastic integro-differential equations : existence, regularity and numerics“. Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10569.
Der volle Inhalt der QuelleYannios, Nicholas, und mikewood@deakin edu au. „Computational aspects of the numerical solution of SDEs“. Deakin University. School of Computing and Mathematics, 2001. http://tux.lib.deakin.edu.au./adt-VDU/public/adt-VDU20060817.123449.
Der volle Inhalt der QuelleTodeschi, Tiziano. „Calibration of local-stochastic volatility models with neural networks“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23052/.
Der volle Inhalt der QuelleHerdiana, Ratna. „Numerical methods for SDEs - with variable stepsize implementation /“. [St. Lucia, Qld.], 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17638.pdf.
Der volle Inhalt der QuelleYue, Wen. „Absolute continuity of the laws, existence and uniqueness of solutions of some SDEs and SPDEs“. Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/absolute-continuity-of-the-laws-existence-and-uniqueness-of-solutions-of-some-sdes-and-spdes(2bc80de8-7c36-453f-a7c2-69fa4ee0e705).html.
Der volle Inhalt der QuelleBücher zum Thema "Stochastic Differential Equations (SDE)"
Pardoux, Etienne, und Aurel Rӑşcanu. Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05714-9.
Der volle Inhalt der QuelleKloeden, Peter E. Numerical solution of SDE through computer experiments. 2. Aufl. Berlin: Springer, 1997.
Den vollen Inhalt der Quelle findenØksendal, Bernt. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02847-6.
Der volle Inhalt der QuelleØksendal, Bernt. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03185-8.
Der volle Inhalt der QuelleØksendal, Bernt. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-14394-6.
Der volle Inhalt der QuellePanik, Michael J. Stochastic Differential Equations. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119377399.
Der volle Inhalt der QuelleØksendal, Bernt. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-13050-6.
Der volle Inhalt der QuelleØksendal, Bernt. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-02574-1.
Der volle Inhalt der QuelleSobczyk, Kazimierz. Stochastic Differential Equations. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3712-6.
Der volle Inhalt der QuelleCecconi, Jaures, Hrsg. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11079-5.
Der volle Inhalt der QuelleBuchteile zum Thema "Stochastic Differential Equations (SDE)"
Hassler, Uwe. „Stochastic Differential Equations (SDE)“. In Stochastic Processes and Calculus, 261–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23428-1_12.
Der volle Inhalt der QuelleKim, Jin Won, und Sebastian Reich. „On Forward–Backward SDE Approaches to Conditional Estimation“. In Mathematics of Planet Earth, 115–36. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70660-8_6.
Der volle Inhalt der QuelleZhang, Jianfeng. „Reflected Backward SDEs“. In Backward Stochastic Differential Equations, 133–60. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7256-2_6.
Der volle Inhalt der QuelleZhang, Jianfeng. „Forward-Backward SDEs“. In Backward Stochastic Differential Equations, 177–201. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7256-2_8.
Der volle Inhalt der QuelleBreda, Dimitri, Jung Kyu Canci und Raffaele D’Ambrosio. „An Invitation to Stochastic Differential Equations in Healthcare“. In Quantitative Models in Life Science Business, 97–110. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11814-2_6.
Der volle Inhalt der QuelleLiu, Wei, und Michael Röckner. „SDEs in Finite Dimensions“. In Stochastic Partial Differential Equations: An Introduction, 55–68. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22354-4_3.
Der volle Inhalt der QuelleLiu, Wei, und Michael Röckner. „SDEs in Infinite Dimensions and Applications to SPDEs“. In Stochastic Partial Differential Equations: An Introduction, 69–121. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22354-4_4.
Der volle Inhalt der QuelleBruned, Y., I. Chevyrev und P. K. Friz. „Examples of Renormalized SDEs“. In Stochastic Partial Differential Equations and Related Fields, 303–17. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74929-7_19.
Der volle Inhalt der QuelleChassagneux, Jean-François, Hinesh Chotai und Mirabelle Muûls. „Introduction to Forward-Backward Stochastic Differential Equations“. In A Forward-Backward SDEs Approach to Pricing in Carbon Markets, 11–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63115-8_2.
Der volle Inhalt der QuelleKohatsu-Higa, Arturo, und Atsushi Takeuchi. „Flows Associated with Stochastic Differential Equations with Jumps“. In Jump SDEs and the Study of Their Densities, 145–54. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9741-8_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Stochastic Differential Equations (SDE)"
Sul, Jinhwan, Jungin E. Kim und Yan Wang. „Quantum Functional Expansion to Solve Stochastic Differential Equations“. In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), 552–59. IEEE, 2024. https://doi.org/10.1109/qce60285.2024.00071.
Der volle Inhalt der QuelleHe, Li, Qi Meng, Wei Chen, Zhi-Ming Ma und Tie-Yan Liu. „Differential Equations for Modeling Asynchronous Algorithms“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/307.
Der volle Inhalt der QuelleMukherjee, Arpan, Rahul Rai, Puneet Singla, Tarunraj Singh und Abani Patra. „An Adaptive Gaussian Mixture Model Approach Based Framework for Solving Fokker-Planck Kolmogorov Equation Related to High Dimensional Dynamical Systems“. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60312.
Der volle Inhalt der QuelleWang, Yan. „Simulating Stochastic Diffusions by Quantum Walks“. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12739.
Der volle Inhalt der QuelleJha, Sumit, Rickard Ewetz, Alvaro Velasquez und Susmit Jha. „On Smoother Attributions using Neural Stochastic Differential Equations“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/73.
Der volle Inhalt der QuelleLeung, Chin-wing, Shuyue Hu und Ho-fung Leung. „Modelling the Dynamics of Multi-Agent Q-learning: The Stochastic Effects of Local Interaction and Incomplete Information“. In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/55.
Der volle Inhalt der QuelleKim, Jongwan, DongJin Lee, Byunggook Na, Seongsik Park, Jeonghee Jo und Sungroh Yoon. „Notice of Retraction: E2V-SDE: From Asynchronous Events to Fast and Continuous Video Reconstruction via Neural Stochastic Differential Equations“. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.01319.
Der volle Inhalt der QuellePrimeau, Louis, Amirali Amirsoleimani und Roman Genov. „SDEX: Monte Carlo Simulation of Stochastic Differential Equations on Memristor Crossbars“. In 2022 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2022. http://dx.doi.org/10.1109/iscas48785.2022.9937861.
Der volle Inhalt der QuelleWu, Jinglai, Yunqing Zhang, Pengfei Chen und Liping Chen. „Numerical Solution of Stochastic Differential Equations with Application to Vehicle Handling“. In SAE 2010 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2010. http://dx.doi.org/10.4271/2010-01-0912.
Der volle Inhalt der QuelleWang, Yan. „Accelerating Stochastic Dynamics Simulation With Continuous-Time Quantum Walks“. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59420.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Stochastic Differential Equations (SDE)"
Christensen, S. K., und G. Kallianpur. Stochastic Differential Equations for Neuronal Behavior. Fort Belvoir, VA: Defense Technical Information Center, Juni 1985. http://dx.doi.org/10.21236/ada159099.
Der volle Inhalt der QuelleDalang, Robert C., und N. Frangos. Stochastic Hyperbolic and Parabolic Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, Juli 1994. http://dx.doi.org/10.21236/ada290372.
Der volle Inhalt der QuelleJiang, Bo, Roger Brockett, Weibo Gong und Don Towsley. Stochastic Differential Equations for Power Law Behaviors. Fort Belvoir, VA: Defense Technical Information Center, Januar 2012. http://dx.doi.org/10.21236/ada577839.
Der volle Inhalt der QuelleSharp, D. H., S. Habib und M. B. Mineev. Numerical Methods for Stochastic Partial Differential Equations. Office of Scientific and Technical Information (OSTI), Juli 1999. http://dx.doi.org/10.2172/759177.
Der volle Inhalt der QuelleJones, Richard H. Fitting Stochastic Partial Differential Equations to Spatial Data. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada279870.
Der volle Inhalt der QuelleGarrison, J. C. Stochastic differential equations and numerical simulation for pedestrians. Office of Scientific and Technical Information (OSTI), Juli 1993. http://dx.doi.org/10.2172/10184120.
Der volle Inhalt der QuelleXiu, Dongbin, und George E. Karniadakis. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada460654.
Der volle Inhalt der QuelleChow, Pao-Liu, und Jose-Luis Menaldi. Stochastic Partial Differential Equations in Physical and Systems Sciences. Fort Belvoir, VA: Defense Technical Information Center, November 1986. http://dx.doi.org/10.21236/ada175400.
Der volle Inhalt der QuelleBudhiraja, Amarjit, Paul Dupuis und Arnab Ganguly. Moderate Deviation Principles for Stochastic Differential Equations with Jumps. Fort Belvoir, VA: Defense Technical Information Center, Januar 2014. http://dx.doi.org/10.21236/ada616930.
Der volle Inhalt der QuelleWebster, Clayton G., Guannan Zhang und Max D. Gunzburger. An adaptive wavelet stochastic collocation method for irregular solutions of stochastic partial differential equations. Office of Scientific and Technical Information (OSTI), Oktober 2012. http://dx.doi.org/10.2172/1081925.
Der volle Inhalt der Quelle