Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Stochastic approximation techniques“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Stochastic approximation techniques" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Stochastic approximation techniques"
Worden, Lee, Ira B. Schwartz, Simone Bianco, Sarah F. Ackley, Thomas M. Lietman und Travis C. Porco. „Hamiltonian Analysis of Subcritical Stochastic Epidemic Dynamics“. Computational and Mathematical Methods in Medicine 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/4253167.
Der volle Inhalt der QuelleBosch, Paul. „A Numerical Method for Two-Stage Stochastic Programs under Uncertainty“. Mathematical Problems in Engineering 2011 (2011): 1–13. http://dx.doi.org/10.1155/2011/840137.
Der volle Inhalt der QuelleSengul, Suleyman, Zafer Bekiryazici und Mehmet Merdan. „Wong-Zakai method for stochastic differential equations in engineering“. Thermal Science 25, Spec. issue 1 (2021): 131–42. http://dx.doi.org/10.2298/tsci200528014s.
Der volle Inhalt der QuelleCapobianco, Enrico. „Computationally Efficient Atomic Representations for Nonstationary Stochastic Processes“. International Journal of Wavelets, Multiresolution and Information Processing 01, Nr. 03 (September 2003): 325–51. http://dx.doi.org/10.1142/s0219691303000177.
Der volle Inhalt der QuelleNajim, K., und E. Ikonen. „Distributed logic processors trained under constraints using stochastic approximation techniques“. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 29, Nr. 4 (Juli 1999): 421–26. http://dx.doi.org/10.1109/3468.769763.
Der volle Inhalt der QuelleVande Wouwer, A., C. Renotte und M. Remy. „Application of stochastic approximation techniques in neural modelling and control“. International Journal of Systems Science 34, Nr. 14-15 (November 2003): 851–63. http://dx.doi.org/10.1080/00207720310001640296.
Der volle Inhalt der QuelleJaakkola, Tommi, Michael I. Jordan und Satinder P. Singh. „On the Convergence of Stochastic Iterative Dynamic Programming Algorithms“. Neural Computation 6, Nr. 6 (November 1994): 1185–201. http://dx.doi.org/10.1162/neco.1994.6.6.1185.
Der volle Inhalt der QuelleMontes, Francisco, und Jorge Mateu. „On the MLE for a spatial point pattern“. Advances in Applied Probability 28, Nr. 2 (Juni 1996): 339. http://dx.doi.org/10.1017/s0001867800048382.
Der volle Inhalt der QuelleSUN, XU, XINGYE KAN und JINQIAO DUAN. „APPROXIMATION OF INVARIANT FOLIATIONS FOR STOCHASTIC DYNAMICAL SYSTEMS“. Stochastics and Dynamics 12, Nr. 01 (März 2012): 1150011. http://dx.doi.org/10.1142/s0219493712003614.
Der volle Inhalt der QuelleSchweiger, Regev, Eyal Fisher, Elior Rahmani, Liat Shenhav, Saharon Rosset und Eran Halperin. „Using Stochastic Approximation Techniques to Efficiently Construct Confidence Intervals for Heritability“. Journal of Computational Biology 25, Nr. 7 (Juli 2018): 794–808. http://dx.doi.org/10.1089/cmb.2018.0047.
Der volle Inhalt der QuelleDissertationen zum Thema "Stochastic approximation techniques"
Krishnaswamy, Ravishankar. „Approximation Techniques for Stochastic Combinatorial Optimization Problems“. Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/157.
Der volle Inhalt der QuelleMhanna, Elissa. „Beyond gradients : zero-order approaches to optimization and learning in multi-agent environments“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG123.
Der volle Inhalt der QuelleThe rise of connected devices and the data they produce has driven the development of large-scale applications. These devices form distributed networks with decentralized data processing. As the number of devices grows, challenges like communication overhead and computational costs increase, requiring optimization methods that work under strict resource constraints, especially where derivatives are unavailable or costly. This thesis focuses on zero-order (ZO) optimization methods are ideal for scenarios where explicit function derivatives are inaccessible. ZO methods estimate gradients based only on function evaluations, making them highly suitable for distributed and federated learning environments where devices collaborate to solve global optimization tasks with limited information and noisy data. In the first chapter, we address distributed ZO optimization for strongly convex functions across multiple agents in a network. We propose a distributed zero-order projected gradient descent algorithm that uses one-point gradient estimates, where the function is queried only once per stochastic realization, and noisy function evaluations estimate the gradient. The chapter establishes the almost sure convergence of the algorithm and derives theoretical upper bounds on the convergence rate. With constant step sizes, the algorithm achieves a linear convergence rate. This is the first time this rate has been established for one-point (and even two-point) gradient estimates. We also analyze the effects of diminishing step sizes, establishing a convergence rate that matches centralized ZO methods' lower bounds. The second chapter addresses the challenges of federated learning (FL) which is often hindered by the communication bottleneck—the high cost of transmitting large amounts of data over limited-bandwidth networks. To address this, we propose a novel zero-order federated learning (ZOFL) algorithm that reduces communication overhead using one-point gradient estimates. Devices transmit scalar values instead of large gradient vectors, lowering the data sent over the network. Moreover, the algorithm incorporates wireless communication disturbances directly into the optimization process, eliminating the need for explicit knowledge of the channel state. This approach is the first to integrate wireless channel properties into a learning algorithm, making it resilient to real-world communication issues. We prove the almost sure convergence of this method in nonconvex optimization settings, establish its convergence rate, and validate its effectiveness through experiments. In the final chapter, we extend the ZOFL algorithm to include two-point gradient estimates. Unlike one-point estimates, which rely on a single function evaluation, two-point estimates query the function twice, providing a more accurate gradient approximation and enhancing the convergence rate. This method maintains the communication efficiency of one-point estimates, where only scalar values are transmitted, and relaxes the assumption that the objective function must be bounded. The chapter demonstrates that the proposed two-point ZO method achieves linear convergence rates for strongly convex and smooth objective functions. For nonconvex problems, the method shows improved convergence speed, particularly when the objective function is smooth and K-gradient-dominated, where a linear rate is also achieved. We also analyze the impact of constant versus diminishing step sizes and provide numerical results showing the method's communication efficiency compared to other federated learning techniques
Bakhous, Christine. „Modèles d'encodage parcimonieux de l'activité cérébrale mesurée par IRM fonctionnelle“. Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00933426.
Der volle Inhalt der QuelleManganas, Spyridon. „A Novel Methodology for Timely Brain Formations of 3D Spatial Information with Application to Visually Impaired Navigation“. Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1567452284983244.
Der volle Inhalt der QuelleBen, Hammouda Chiheb. „Hierarchical Approximation Methods for Option Pricing and Stochastic Reaction Networks“. Diss., 2020. http://hdl.handle.net/10754/664348.
Der volle Inhalt der QuellePsaros, Andriopoulos Apostolos. „Sparse representations and quadratic approximations in path integral techniques for stochastic response analysis of diverse systems/structures“. Thesis, 2019. https://doi.org/10.7916/d8-xcxx-my55.
Der volle Inhalt der QuelleBücher zum Thema "Stochastic approximation techniques"
Workshop on Randomization and Approximation Techniques in Computer Science (1997 Bologna, Italy). Randomization and approximation techniques in computer science: International Workshop RANDOM '97, Bologna, Italy, July 11-12,1997 : proceedings. New York: Springer, 1997.
Den vollen Inhalt der Quelle findenWorkshop on Randomization and Approximation Techniques in Computer Science (1997 Bologna, Italy). Randomization and approximation techniques in computer science: International workshop RANDOM'97, Bologna, Italy, July 11-12, 1997 : proceedings. Berlin: Springer, 1997.
Den vollen Inhalt der Quelle findenAndriopoulos, Apostolos Psaros. Sparse representations and quadratic approximations in path integral techniques for stochastic response analysis of diverse systems/structures. [New York, N.Y.?]: [publisher not identified], 2019.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Stochastic approximation techniques"
Kall, P., A. Ruszczyński und K. Frauendorfer. „Approximation Techniques in Stochastic Programming“. In Springer Series in Computational Mathematics, 33–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-61370-8_2.
Der volle Inhalt der QuelleChawla, Shuchi, und Tim Roughgarden. „Single-Source Stochastic Routing“. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 82–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11830924_10.
Der volle Inhalt der QuelleBarbierato, Enrico, Marco Gribaudo und Daniele Manini. „Fluid Approximation of Pool Depletion Systems“. In Analytical and Stochastic Modelling Techniques and Applications, 60–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43904-4_5.
Der volle Inhalt der QuelleMarti, K. „Stochastic Programming: Numerical Solution Techniques by Semi-Stochastic Approximation Methods“. In Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty, 23–43. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2111-5_3.
Der volle Inhalt der QuelleNikolova, Evdokia. „Approximation Algorithms for Reliable Stochastic Combinatorial Optimization“. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 338–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15369-3_26.
Der volle Inhalt der QuelleAlaei, Saeed, MohammadTaghi Hajiaghayi und Vahid Liaghat. „The Online Stochastic Generalized Assignment Problem“. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 11–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40328-6_2.
Der volle Inhalt der QuelleNeupane, Thakur, Zhen Zhang, Curtis Madsen, Hao Zheng und Chris J. Myers. „Approximation Techniques for Stochastic Analysis of Biological Systems“. In Computational Biology, 327–48. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17297-8_12.
Der volle Inhalt der QuelleGupta, Anupam, MohammadTaghi Hajiaghayi und Amit Kumar. „Stochastic Steiner Tree with Non-uniform Inflation“. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 134–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74208-1_10.
Der volle Inhalt der QuelleSo, Anthony Man–Cho, Jiawei Zhang und Yinyu Ye. „Stochastic Combinatorial Optimization with Controllable Risk Aversion Level“. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 224–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11830924_22.
Der volle Inhalt der QuelleBortolussi, Luca. „Limit Behavior of the Hybrid Approximation of Stochastic Process Algebras“. In Analytical and Stochastic Modeling Techniques and Applications, 367–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13568-2_26.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Stochastic approximation techniques"
Nakamura, Tomoki, Kazutaka Tomida, Shouta Kouno, Hidetsugu Irie und Shuichi Sakai. „Stochastic Iterative Approximation: Software/hardware techniques for adjusting aggressiveness of approximation“. In 2021 IEEE 39th International Conference on Computer Design (ICCD). IEEE, 2021. http://dx.doi.org/10.1109/iccd53106.2021.00023.
Der volle Inhalt der QuelleRai, Prashant, Mathilde Chevreuil, Anthony Nouy und Jayant Sen Gupta. „A Regression Based Non-Intrusive Method Using Separated Representation for Uncertainty Quantification“. In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82301.
Der volle Inhalt der QuelleJabŁonka, Anna, und Radosław Iwankiewicz. „Moment Equations and Modified Closure Approximation Techniques for Nonlinear Dynamic Systems under Renewal Impulse Process Excitations“. In Proceedings of the 8th International Conference on Computational Stochastic Mechanics (CSM 8). Singapore: Research Publishing Services, 2018. http://dx.doi.org/10.3850/978-981-11-2723-6_30-cd.
Der volle Inhalt der QuelleLuo, Liang, Zhi-Qin Zhao und Xiao-Pin Li. „A Novel Surveillance Video Processing Using Stochastic Low-Rank And Generalized Low-Rank Approximation Techniques“. In 2018 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2018. http://dx.doi.org/10.1109/icmlc.2018.8527059.
Der volle Inhalt der QuelleKretzschmar, Florian, Matthias Beggiato und Alois Pichler. „Detection of Discomfort in Autonomous Driving via Stochastic Approximation“. In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002437.
Der volle Inhalt der QuelleHe, Li, Qi Meng, Wei Chen, Zhi-Ming Ma und Tie-Yan Liu. „Differential Equations for Modeling Asynchronous Algorithms“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/307.
Der volle Inhalt der QuelleTo, C. W. S. „Large Nonlinear Random Responses of Spatially Non-Homogeneous Stochastic Shell Structures“. In ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/detc2006-99261.
Der volle Inhalt der QuelleMarti, K. „Approximation and Derivatives of Probability Functions in Probabilistic Structural Analysis and Design“. In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0048.
Der volle Inhalt der QuelleChen, Weizhe, Zihan Zhou, Yi Wu und Fei Fang. „Temporal Induced Self-Play for Stochastic Bayesian Games“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/14.
Der volle Inhalt der QuelleHou, Bo-Jian, Lijun Zhang und Zhi-Hua Zhou. „Storage Fit Learning with Unlabeled Data“. In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/256.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Stochastic approximation techniques"
Potamianos, Gerasimos, und John Goutsias. Stochastic Simulation Techniques for Partition Function Approximation of Gibbs Random Field Images. Fort Belvoir, VA: Defense Technical Information Center, Juni 1991. http://dx.doi.org/10.21236/ada238611.
Der volle Inhalt der Quelle