Zeitschriftenartikel zum Thema „STK10“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "STK10" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Ma, Jin-Xia, Dan-Dan Xu, Shun-Yuan Lu, Qian-Lan Wang, Lu Zhang, Rui Guo, Ling-Yun Tang et al. „Stk10 Deficiency in Mice Promotes Tumor Growth by Dysregulating the Tumor Microenvironment“. Biology 11, Nr. 11 (15.11.2022): 1668. http://dx.doi.org/10.3390/biology11111668.
Der volle Inhalt der QuelleLong, Zhangbiao, Jichun Yang, Xinyao Liu, Min Ruan, Danchen Meng, Junling Zhuang, Zhenqi Huang, Jian Ge und Bing Han. „STK10 Mutation Block Erythropoiesis in Acquired Pure Red Cell Aplasia Via Down-Regulated the Ribosome Biosynthesis“. Blood 142, Supplement 1 (28.11.2023): 3825. http://dx.doi.org/10.1182/blood-2023-189722.
Der volle Inhalt der QuelleFUKUMURA, KAZUTAKA, YOSHIHIRO YAMASHITA, MASAHITO KAWAZU, EIRIN SAI, SHIN-ICHIRO FUJIWARA, NAOYA NAKAMURA, KENGO TAKEUCHI et al. „STK10 missense mutations associated with anti-apoptotic function“. Oncology Reports 30, Nr. 4 (09.07.2013): 1542–48. http://dx.doi.org/10.3892/or.2013.2605.
Der volle Inhalt der QuelleZhang, Lu, Shun-Yuan Lu, Rui Guo, Jin-Xia Ma, Ling-Yun Tang, Yan Shen, Chun-Ling Shen et al. „Knockout of STK10 promotes the migration and invasion of cervical cancer cells“. Translational Cancer Research 9, Nr. 11 (November 2020): 7079–90. http://dx.doi.org/10.21037/tcr-20-1601.
Der volle Inhalt der QuelleWalter, Sarah A., Richard E. Cutler, Ricardo Martinez, Mikhail Gishizky und Ronald J. Hill. „Stk10, a New Member of the Polo-like Kinase Kinase Family Highly Expressed in Hematopoietic Tissue“. Journal of Biological Chemistry 278, Nr. 20 (13.03.2003): 18221–28. http://dx.doi.org/10.1074/jbc.m212556200.
Der volle Inhalt der QuelleAsquith, Christopher R. M., Tuomo Laitinen, James M. Bennett, Carrow I. Wells, Jonathan M. Elkins, William J. Zuercher, Graham J. Tizzard und Antti Poso. „Design and Analysis of the 4‐Anilinoquin(az)oline Kinase Inhibition Profiles of GAK/SLK/STK10 Using Quantitative Structure‐Activity Relationships“. ChemMedChem 15, Nr. 1 (26.11.2019): 26–49. http://dx.doi.org/10.1002/cmdc.201900521.
Der volle Inhalt der QuelleKuramochi, Satomi, Yoichi Matsuda, Fujiko Kitamura, Mieko Okamoto, Hajime Karasuyama und Hiromichi Yonekawa. „Molecular cloning of the human gene STK10 encoding lymphocyte-oriented kinase, and comparative chromosomal mapping of the human, mouse, and rat homologues“. Immunogenetics 49, Nr. 5 (07.04.1999): 369–75. http://dx.doi.org/10.1007/s002510050509.
Der volle Inhalt der QuelleAsquith, Christopher R. M., Tuomo Laitinen, James M. Bennett, Carrow I. Wells, Jonathan M. Elkins, William J. Zuercher, Graham J. Tizzard und Antti Poso. „Cover Feature: Design and Analysis of the 4‐Anilinoquin(az)oline Kinase Inhibition Profiles of GAK/SLK/STK10 Using Quantitative Structure‐Activity Relationships (ChemMedChem 1/2020)“. ChemMedChem 15, Nr. 1 (07.01.2020): 2. http://dx.doi.org/10.1002/cmdc.201900691.
Der volle Inhalt der QuelleSugawara, Yo, Hideharu Hagiya, Yukihiro Akeda, Dan Takeuchi, Noriko Sakamoto, Yuki Matsumoto, Daisuke Motooka, Isao Nishi, Kazunori Tomono und Shigeyuki Hamada. „Community spread and acquisition of clinically relevant Escherichia coli harbouring blaNDM among healthy Japanese residents of Yangon, Myanmar“. Journal of Antimicrobial Chemotherapy 76, Nr. 6 (24.03.2021): 1448–54. http://dx.doi.org/10.1093/jac/dkab070.
Der volle Inhalt der QuelleKaouass, M., M. Audette, D. Ramotar, S. Verma, D. De Montigny, I. Gamache, K. Torossian und R. Poulin. „The STK2 gene, which encodes a putative Ser/Thr protein kinase, is required for high-affinity spermidine transport in Saccharomyces cerevisiae.“ Molecular and Cellular Biology 17, Nr. 6 (Juni 1997): 2994–3004. http://dx.doi.org/10.1128/mcb.17.6.2994.
Der volle Inhalt der QuelleBange, Erin, Melina E. Marmarelis, Wei-Ting Hwang, Yu-Xiao Yang, Jeffrey C. Thompson, Jason Rosenbaum, Joshua M. Bauml et al. „Impact of KRAS and TP53 Co-Mutations on Outcomes After First-Line Systemic Therapy Among Patients With STK11-Mutated Advanced Non–Small-Cell Lung Cancer“. JCO Precision Oncology, Nr. 3 (Dezember 2019): 1–11. http://dx.doi.org/10.1200/po.18.00326.
Der volle Inhalt der QuelleTanaka, Susumu, Yoshiko Honda, Misa Sawachika, Kensuke Futani, Namika Yoshida und Tohru Kodama. „Degradation of STK16 via KCTD17 with Ubiquitin–Proteasome System in Relation to Sleep–Wake Cycle“. Kinases and Phosphatases 1, Nr. 1 (22.12.2022): 14–22. http://dx.doi.org/10.3390/kinasesphosphatases1010003.
Der volle Inhalt der QuelleKlein, Alexandra, Daniela Flügel und Thomas Kietzmann. „Transcriptional Regulation of Serine/Threonine Kinase-15 (STK15) Expression by Hypoxia and HIF-1“. Molecular Biology of the Cell 19, Nr. 9 (September 2008): 3667–75. http://dx.doi.org/10.1091/mbc.e08-01-0042.
Der volle Inhalt der QuelleHan, Yun, und Junyan Su. „The landscape of STK11 mutations and hotspots in Chinese patients with solid tumors.“ Journal of Clinical Oncology 40, Nr. 16_suppl (01.06.2022): e15112-e15112. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.e15112.
Der volle Inhalt der QuelleFigueroa-González, Gabriela, José F. Carrillo-Hernández, Itzel Perez-Rodriguez, David Cantú de León, Alma D. Campos-Parra, Antonio D. Martínez-Gutiérrez, Jossimar Coronel-Hernández et al. „Negative Regulation of Serine Threonine Kinase 11 (STK11) through miR-100 in Head and Neck Cancer“. Genes 11, Nr. 9 (08.09.2020): 1058. http://dx.doi.org/10.3390/genes11091058.
Der volle Inhalt der QuelleAhronian, Leanne G., Preksha Shahagadkar, Lauren Flynn, Lauren Grove, Shangtao Liu, Samuel R. Meier, Binzheng Shen et al. „Abstract 5584: Experimental ‘loss-of function’ annotation of STK11 mutations with prognostic and therapeutic implications (TNG260mutationfinder.com)“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 5584. http://dx.doi.org/10.1158/1538-7445.am2024-5584.
Der volle Inhalt der QuelleEksioglu, Eria, Gabriela M. Wright, Trent R. Percy, Kenneth L. Wright und W. Douglas Cress. „Abstract 4454: Loss of CX3CL1 expression mediates immune evasion in STK11 mutated lung adenocarcinomas“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 4454. http://dx.doi.org/10.1158/1538-7445.am2023-4454.
Der volle Inhalt der QuelleIglesia, Michael, Moh'd M. Khushman, Kian-Huat Lim, Brian Andrew Van Tine, Jingxia Liu, Katrina Sophia Pedersen, Xiuli Liu et al. „STK11 alterations as predictive biomarkers of resistance to immune checkpoint inhibitors in multiple cancers with mismatch repair gene alterations.“ Journal of Clinical Oncology 41, Nr. 16_suppl (01.06.2023): 2619. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.2619.
Der volle Inhalt der QuelleNaqash, Abdul Rafeh, Charalampos S. Floudas, Asaf Maoz, Joanne Xiu, Yasmine Baca, Jia Zeng, Chul Kim et al. „STK11/TP53 co-mutated non-small cell lung cancer (NSCLC) to display a unique tumor microenvironment (TME) and metabolic profile.“ Journal of Clinical Oncology 39, Nr. 15_suppl (20.05.2021): 9087. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.9087.
Der volle Inhalt der QuelleDonnelly, Liam L., Tyler C. Hogan, Sean M. Lenahan, Gopika Nandagopal, Jenna G. Eaton, Meagan A. Lebeau, Cai L. McCann et al. „Functional assessment of somatic STK11 variants identified in primary human non-small cell lung cancers“. Carcinogenesis 42, Nr. 12 (19.11.2021): 1428–38. http://dx.doi.org/10.1093/carcin/bgab104.
Der volle Inhalt der QuelleRobé, Caroline, Katrin Daehre, Roswitha Merle, Anika Friese, Sebastian Guenther und Uwe Roesler. „Impact of different management measures on the colonization of broiler chickens with ESBL- and pAmpC- producing Escherichia coli in an experimental seeder-bird model“. PLOS ONE 16, Nr. 1 (07.01.2021): e0245224. http://dx.doi.org/10.1371/journal.pone.0245224.
Der volle Inhalt der QuelleKaufman, Jacob, Dwight Hall Owen, Regan Michelle Memmott, Gregory Alan Otterson, Kai He, Carolyn J. Presley, Daniel Spakowicz et al. „Novel STK11 differentiation phenotype classifier STK11-DPC: Immunosuppressive tumor microenvironment (TME) and response to immune checkpoint blockade (ICB) in STK11-deficient NSCLC.“ Journal of Clinical Oncology 41, Nr. 16_suppl (01.06.2023): 2626. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.2626.
Der volle Inhalt der QuellePrior, Shannon, Logan Sands, Sean Lenahan, Hailey Sarausky, Melissa Scheiber, David Seward und Paula Deming. „Abstract 1791: Metabolic rewiring promotes metastatic potential upon glutamine deprivation in STK11 null KRAS-driven lung adenocarcinoma“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 1791. http://dx.doi.org/10.1158/1538-7445.am2024-1791.
Der volle Inhalt der QuelleNandagopal, Gopika, Sean Lenahan, Hannah Ross, Hailey Sarausky, David Seward und Paula Deming. „Abstract 2751: Functional assessment of STK11 C-terminal domain variants“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 2751. http://dx.doi.org/10.1158/1538-7445.am2024-2751.
Der volle Inhalt der QuelleSuzuki, Sora, Catrina Ting, Bojidar Kandar, Te-An Chen, Anm Nazmul Khan, Thejaswini Giridharan, Brahm Segal und Edwin H. Yau. „Abstract 108: Tumor-derived complement C3 is overexpressed in STK11 mutant non-small cell lung cancer and contributes to an immunosuppressive tumor microenvironment in a syngeneic mouse model“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 108. http://dx.doi.org/10.1158/1538-7445.am2024-108.
Der volle Inhalt der QuelleGERHOLD, G., M. H. SCHULZE, U. GROSS und W. BOHNE. „Multilocus sequence typing and CTX-M characterization of ESBL-producing E. coli: a prospective single-centre study in Lower Saxony, Germany“. Epidemiology and Infection 144, Nr. 15 (30.06.2016): 3300–3304. http://dx.doi.org/10.1017/s0950268816001412.
Der volle Inhalt der QuelleLi, Qingchu, Cuilin Li, Haoyun Li, Liu Zeng, Zhiqiang Kang, Yu Mao, Xinyue Tang et al. „STK11 rs2075604 Polymorphism Is Associated with Metformin Efficacy in Chinese Type 2 Diabetes Mellitus“. International Journal of Endocrinology 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/3402808.
Der volle Inhalt der QuelleSun, Chongbo, Yvette Newbatt, Leon Douglas, Paul Workman, Wynne Aherne und Spiros Linardopoulos. „High-Throughput Screening Assay for Identification of Small Molecule Inhibitors of Aurora2/STK15 Kinase“. Journal of Biomolecular Screening 9, Nr. 5 (August 2004): 391–97. http://dx.doi.org/10.1177/1087057104264071.
Der volle Inhalt der QuellePons-Tostivint, Elvire, Alexandre Lugat, Jean-François Fontenau, Marc Guillaume Denis und Jaafar Bennouna. „STK11/LKB1 Modulation of the Immune Response in Lung Cancer: From Biology to Therapeutic Impact“. Cells 10, Nr. 11 (11.11.2021): 3129. http://dx.doi.org/10.3390/cells10113129.
Der volle Inhalt der QuellePatel, Ayushi, Soumyadip Sahu, Ke Geng, Salman Punekar, Janaye Stephens, Jiehui Deng, Ting Chen et al. „Abstract 3916: TNG260, a small molecule CoREST inhibitor, sensitizes STK11-mutant NSCLC to anti-PD1 immunotherapy“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 3916. http://dx.doi.org/10.1158/1538-7445.am2024-3916.
Der volle Inhalt der QuelleHong, Runyu, Wenke Liu und David Fenyö. „Predicting and Visualizing STK11 Mutation in Lung Adenocarcinoma Histopathology Slides Using Deep Learning“. BioMedInformatics 2, Nr. 1 (30.12.2021): 101–5. http://dx.doi.org/10.3390/biomedinformatics2010006.
Der volle Inhalt der QuelleNourmohammadi, Bahareh, Joseph M. Amann, Rahul Shivahare, Qin Ma, Zihai Li, David P. Carbone und Jacob Kaufman. „Abstract 5088: Evaluating TNF-receptor associated factor 2 (TRAF2) as a targetable driver of immune resistance in LKB1 deficient non-small cell lung cancer“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 5088. http://dx.doi.org/10.1158/1538-7445.am2024-5088.
Der volle Inhalt der QuelleSeward, David Joseph, Sean Lenahan, Allison Racela und Israel Odekunle. „Abstract 3026: STK11 negatively regulates NFKB signaling in KRAS-driven lung adenocarcinoma“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 3026. http://dx.doi.org/10.1158/1538-7445.am2024-3026.
Der volle Inhalt der QuelleTavolaro, Simona, Sabina Chiaretti, Monica Messina, Francesca R. Mauro, Ilaria Del Giudice, Roberta Maggio, Emanuela M. Ghia et al. „Gene Expression Profile of Protein Kinases Reveals a Distinctive Signature of Chronic Lymphocytic Leukemia (CLL) and Points to a Role of Second Generation Protein Kinase Inhibitors.“ Blood 108, Nr. 11 (16.11.2006): 2794. http://dx.doi.org/10.1182/blood.v108.11.2794.2794.
Der volle Inhalt der QuelleWang, Junjun, Juanjuan Liu, Xinmiao Ji und Xin Zhang. „Tyr198 is the Essential Autophosphorylation Site for STK16 Localization and Kinase Activity“. International Journal of Molecular Sciences 20, Nr. 19 (30.09.2019): 4852. http://dx.doi.org/10.3390/ijms20194852.
Der volle Inhalt der QuelleHempel, Louisa, Laura Amanda Boos, Luis Fábregas-Ibáñez, Gabriele Gut, Marta Nowak, Martin Zoche und Andreas Wicki. „Loss of heterozygosity (LOH) in KEAP1/STK11-mutated lung adenocarcinoma to characterize a new subgroup of hard-to-treat patients with unmet need in the real-world setting.“ Journal of Clinical Oncology 42, Nr. 16_suppl (01.06.2024): 8641. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.8641.
Der volle Inhalt der QuelleMarin-Acevedo, Julian A. A., Justin Wang Shi, Yan Han, Mya Tran, Ahmad Karkash, Weston He, Misty Dawn Shields und Nasser H. Hanna. „Outcomes in STK11-, KEAP1-, and KRAS-mutant lung squamous cell carcinoma (LSCC) with use of immune checkpoint inhibitors (ICIs).“ Journal of Clinical Oncology 42, Nr. 16_suppl (01.06.2024): e20504-e20504. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.e20504.
Der volle Inhalt der QuelleSen, Utsav, und Triparna Sen. „Abstract LB014: Targeting Stearoyl-coA desaturase (SCD) as a therapeutic strategy in STK11/KEAP1 co-mutant non-small cell lung cancer“. Cancer Research 83, Nr. 8_Supplement (14.04.2023): LB014. http://dx.doi.org/10.1158/1538-7445.am2023-lb014.
Der volle Inhalt der QuelleHu, Jing, Shuang Li, Xiaozhi Sun, Zhuoqing Fang, Lina Wang, Feng Xiao, Min Shao et al. „Stk40 deletion elevates c-JUN protein level and impairs mesoderm differentiation“. Journal of Biological Chemistry 294, Nr. 25 (15.05.2019): 9959–72. http://dx.doi.org/10.1074/jbc.ra119.007840.
Der volle Inhalt der QuelleRoyer, Cole M., Lauren K. Bialek, Hailey M. Sarausky, Shannon M. Prior, Gopika Nandagopal, Paula B. Deming, David J. Seward und Melissa N. Scheiber. „Abstract 2772: Mechanisms linking STK11 loss with metastatic potential in KRAS-mutated lung adenocarcinoma“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 2772. http://dx.doi.org/10.1158/1538-7445.am2024-2772.
Der volle Inhalt der QuelleMa, Hongbo, Ailian Hei, Ji Zhou, Ellen He, Sven Skog und Jin Li. „Serum thymidine kinase 1 protein concentration for predicting early progression and monitoring the response to TACE in hepatocellular carcinomas: a network meta-analysis“. Future Science OA 7, Nr. 7 (August 2021): FSO717. http://dx.doi.org/10.2144/fsoa-2021-0016.
Der volle Inhalt der QuelleLazdun, Yelena, Lydia Greenlees, Song Wu, Nicholas Holoweckyj, Fernanda Pilataxi, Susana Hayes, Brandon Higgs und Katie Streicher. „Abstract 5547: EGFR inhibition decreases immunosuppressive cytokines and reduces growth in STK11 mutant NSCLC“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 5547. http://dx.doi.org/10.1158/1538-7445.am2022-5547.
Der volle Inhalt der QuelleNishimura, Sadaaki, Masakazu Yashiro, Tomohiro Sera, Yurie Yamamoto, Yukako Kushitani, Atsushi Sugimoto, Shuhei Kushiyama et al. „Serine threonine kinase 11/liver kinase B1 mutation in sporadic scirrhous-type gastric cancer cells“. Carcinogenesis 41, Nr. 11 (31.03.2020): 1616–23. http://dx.doi.org/10.1093/carcin/bgaa031.
Der volle Inhalt der QuelleRobbins, Helen L., Peter Fletcher, Joshua Savage, Manita Mehmi, Yvonne Summers, Alastair Greystoke, Noelle O’Rourke et al. „Abstract A115: mTOR targeting in STK11 deficient Non-Small Cell Lung Cancer (NSCLC): final results, pre-clinical rationale and biomarker analysis of a phase II trial of the mTORC1/2 inhibitor vistusertib in STK11 deficient lung adenocarcinoma (NLMT B2)“. Molecular Cancer Therapeutics 22, Nr. 12_Supplement (01.12.2023): A115. http://dx.doi.org/10.1158/1535-7163.targ-23-a115.
Der volle Inhalt der QuelleManolakos, Peter, und Linda D. Ward. „A Critical Review of the Prognostic and Predictive Implications of KRAS and STK11 Mutations and Co-Mutations in Metastatic Non-Small Lung Cancer“. Journal of Personalized Medicine 13, Nr. 6 (18.06.2023): 1010. http://dx.doi.org/10.3390/jpm13061010.
Der volle Inhalt der QuelleUba, Richie, Luis E. Raez, Katerine Dumais, Frank Gentile, Herman W. Powery, Gelenis Calzadilla Domingo, Paola Izquierdo und Brian Hunis. „Serine/threonine kinase 11 (STK11) mutations and immunotherapy resistance in patients with non-small cell lung cancer.“ Journal of Clinical Oncology 38, Nr. 15_suppl (20.05.2020): e15055-e15055. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e15055.
Der volle Inhalt der QuelleNobili, Gaia, Gianfranco La Bella, Maria Grazia Basanisi, Annita Maria Damato, Rosa Coppola, Rachele Migliorelli, Valeria Rondinone, Pimlapas Leekitcharoenphon, Valeria Bortolaia und Giovanna La Salandra. „Occurrence and Characterisation of Colistin-Resistant Escherichia coli in Raw Meat in Southern Italy in 2018–2020“. Microorganisms 10, Nr. 9 (08.09.2022): 1805. http://dx.doi.org/10.3390/microorganisms10091805.
Der volle Inhalt der QuelleDurani, Vidushi, Corrin A. Wohlhieter, Alvaro Quintanal-Villalonga, Triparna Sen, Parvathy Manoj und Charles M. Rudin. „Abstract 3000: Ferroptosis evasion as a therapeutic strategy in STK11/KEAP1 co-mutant lung adenocarcinoma“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 3000. http://dx.doi.org/10.1158/1538-7445.am2022-3000.
Der volle Inhalt der QuelleSingh, Neeraj, und Smita Agrawal. „Abstract 2546: Identifying co-mutational signatures in STK11 mutated advanced non-small cell lung cancer (aNSCLC) patients that help overcome poor response to immune checkpoint inhibitors (ICI’s)“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 2546. http://dx.doi.org/10.1158/1538-7445.am2024-2546.
Der volle Inhalt der QuelleBerthelsen, Martin F., Siv L. Leknes, Maria Riedel, Mette A. Pedersen, Justin V. Joseph, Henrik Hager, Mikkel H. Vendelbo und Martin K. Thomsen. „Comparative Analysis of Stk11/Lkb1 versus Pten Deficiency in Lung Adenocarcinoma Induced by CRISPR/Cas9“. Cancers 13, Nr. 5 (26.02.2021): 974. http://dx.doi.org/10.3390/cancers13050974.
Der volle Inhalt der Quelle