Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Stencil mask.

Zeitschriftenartikel zum Thema „Stencil mask“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Stencil mask" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Lee, Yong‐Won, Keun‐Soo Kim und Katsuaki Suganuma. „The behaviour of solder pastes in stencil printing with electropolishing process“. Soldering & Surface Mount Technology 25, Nr. 3 (21.06.2013): 164–74. http://dx.doi.org/10.1108/ssmt-12-2012-0027.

Der volle Inhalt der Quelle
Annotation:
PurposeThe purpose of this paper is to study the effect of the electropolishing time of stencil manufacturing parameters and solder‐mask definition methods of PCB pad design parameters on the performance of solder paste stencil printing process for the assembly of 01005 chip components.Design/methodology/approachDuring the study, two types of stencils were manufactured for the evaluations: electroformed stencils and electropolished laser‐cut stencils. The electroformed stencils were manufactured using the standard electroforming process and their use in the paste printing process was compared against the use of an electropolished laser‐cut stencil. The electropolishing performance of the laser‐cut stencil was evaluated twice at the following intervals: 100 s and 200 s. The performance of the laser‐cut stencil was also evaluated without electropolishing. An optimized process was established after the polished stencil apertures of the laser‐cut stencil were inspected. The performance evaluations were made by visually inspecting the quality of the post‐surface finishing for the aperture wall and the quality of that post‐surface finishing was further checked using a scanning electron microscope. A test board was used in a series of designed experiments to evaluate the solder paste printing process.FindingsThe results demonstrated that the length of the electropolishing time had a significant effect on the small stencil's aperture quality and the solder paste's stencil printing performance. In this study, the most effective electropolishing time was 100 s for a stencil thickness of 0.08 mm. The deposited solder paste thickness was significantly better for the enhanced laser‐cut stencil with electropolishing compared to the conventional electroformed stencils. In this printing‐focused work, print paste thickness measurements were also found to vary across different solder‐mask definition methods of printed circuit board pad designs with no change in the size of the stencil aperture. The highest paste value transfer consistently occurred with solder‐mask‐defined pads, when an electropolished laser‐cut stencil was used.Originality/valueDue to important improvements in the quality of the electropolished laser‐cut stencil, and based on the results of this experiment, the electropolished laser‐cut stencil is strongly recommended for the solder paste printing of fine‐pitch and miniature components, especially in comparison to the typical laser‐cut stencil. The advantages of implementing a 01005 chip component mass production assembly process include excellent solder paste release, increased solder volume, good manufacture‐ability, fast turnaround time, and greater cost saving opportunities.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Shibata, T., K. Suguro, K. Sugihara, T. Nishihashi, J. Fujiyama und Y. Sakurada. „Stencil mask ion implantation technology“. IEEE Transactions on Semiconductor Manufacturing 15, Nr. 2 (Mai 2002): 183–88. http://dx.doi.org/10.1109/66.999589.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Deshmukh, Mandar M., D. C. Ralph, M. Thomas und J. Silcox. „Nanofabrication using a stencil mask“. Applied Physics Letters 75, Nr. 11 (13.09.1999): 1631–33. http://dx.doi.org/10.1063/1.124777.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Takenaka, H., H. Yamashita, Y. Tomo, Y. Kojima, M. Watanabe, T. Iwasaki und M. Yamabe. „Dynamic analysis of a stencil mask“. Microelectronic Engineering 61-62 (Juli 2002): 227–32. http://dx.doi.org/10.1016/s0167-9317(02)00543-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

SATO, Keiichi, Kazuhiro YOSHIDA und Joon-wan KIM. „Development of magnetic material stencil mask“. Proceedings of Yamanashi District Conference 2017 (2017): 205. http://dx.doi.org/10.1299/jsmeyamanashi.2017.205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Nishihashi, T., K. Kashimoto, J. Fujiyama, Y. Sakurada, T. Shibata, K. Suguro, K. Sugihara et al. „Ion-graphy implanter with stencil mask“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 20, Nr. 3 (2002): 914. http://dx.doi.org/10.1116/1.1475982.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yamashita, Hiroshi, Kunio Takeuchi und Hideki Masaoka. „Mask split algorithm for stencil mask in electron projection lithography“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 19, Nr. 6 (2001): 2478. http://dx.doi.org/10.1116/1.1412897.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Reu, P., R. Engelstad, E. Lovell, C. Magg und M. Lercel. „Modeling mask fabrication and pattern transfer distortions for EPL stencil masks“. Microelectronic Engineering 57-58 (September 2001): 467–73. http://dx.doi.org/10.1016/s0167-9317(01)00470-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sprague, M., W. Semke, R. Engelstad, E. Lovell, A. Chalupka, H. Löschner und G. Stengl. „Stencil mask distortion control using nonsymmetric perforation rings“. Microelectronic Engineering 41-42 (März 1998): 225–28. http://dx.doi.org/10.1016/s0167-9317(98)00051-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Butschke, J., A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner et al. „SOI wafer flow process for stencil mask fabrication“. Microelectronic Engineering 46, Nr. 1-4 (Mai 1999): 473–76. http://dx.doi.org/10.1016/s0167-9317(99)00043-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Amemiya, Isao, Hiroshi Yamashita, Sakae Nakatsuka, Tadashi Sakurai, Ikuru Kimura, Mitsuharu Tsukahara und Osamu Nagarekawa. „Stencil Mask Technology for Electron-Beam Projection Lithography“. Japanese Journal of Applied Physics 42, Part 1, No. 6B (30.06.2003): 3811–15. http://dx.doi.org/10.1143/jjap.42.3811.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Didenko, L., J. Melngailis, H. Löschner, G. Stengl, A. Chalupka und A. Shimkunas. „Analysis of stencil mask distortion in ion projection lithography“. Microelectronic Engineering 35, Nr. 1-4 (Februar 1997): 443–46. http://dx.doi.org/10.1016/s0167-9317(96)00182-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Riordon, James. „Stencil mask temperature measurement and control during ion irradiation“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, Nr. 6 (November 1996): 3900. http://dx.doi.org/10.1116/1.588690.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Wasson, J. R. „Ion absorbing stencil mask coatings for ion beam lithography“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 15, Nr. 6 (November 1997): 2214. http://dx.doi.org/10.1116/1.589616.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Zhang, Z. Q., D. Chiappe, A. Toma, C. Boragno, J. D. Guo, E. G. Wang und F. Buatier de Mongeot. „GaAs nanostructuring by self-organized stencil mask ion lithography“. Journal of Applied Physics 110, Nr. 11 (Dezember 2011): 114321. http://dx.doi.org/10.1063/1.3665693.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Yamashita, Hiroshi, Kimitoshi Takahashi, Isao Amemiya, Kunio Takeuchi, Hideki Masaoka, Hiroshi Takenaka und Masaki Yamabe. „Complementary mask pattern split for 8 in. stencil masks in electron projection lithography“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 20, Nr. 6 (2002): 3015. http://dx.doi.org/10.1116/1.1518019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Lishchynska, Maryna, Victor Bourenkov, Marc A. F. van den Boogaart, Lianne Doeswijk, Juergen Brugger und James C. Greer. „Predicting mask distortion, clogging and pattern transfer for stencil lithography“. Microelectronic Engineering 84, Nr. 1 (Januar 2007): 42–53. http://dx.doi.org/10.1016/j.mee.2006.08.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Rangelow, I. W. „p-n junction-based wafer flow process for stencil mask fabrication“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 16, Nr. 6 (November 1998): 3592. http://dx.doi.org/10.1116/1.590500.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Ehrmann, A., T. Struck, A. Chalupka, E. Haugeneder, H. Löschner, J. Butschke, M. Irmscher et al. „Comparison of silicon stencil mask distortion measurements with finite element analysis“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 17, Nr. 6 (1999): 3107. http://dx.doi.org/10.1116/1.590962.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Maebashi, Hiroo, Takao Okabe und Jun Taniguchi. „Stencil mask using ultra-violet-curable positive-tone electron beam resist“. Microelectronic Engineering 214 (Juni 2019): 21–27. http://dx.doi.org/10.1016/j.mee.2019.04.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Higashi, Kazuhiko, Kazuhiro Uchida, Atsushi Hotta, Koichi Hishida und Norihisa Miki. „Micropatterning of Silica Nanoparticles by Electrospray Deposition through a Stencil Mask“. Journal of Laboratory Automation 19, Nr. 1 (Februar 2014): 75–81. http://dx.doi.org/10.1177/2211068213495205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Amemiya, Isao, Hiroshi Yamashita, Sakae Nakatsuka, Ikuru Kimura, Mitsuharu Tsukahara, Satoshi Yasumatsu und Osamu Nagarekawa. „Fabrication of complete 8 in. stencil mask for electron projection lithography“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 20, Nr. 6 (2002): 3010. http://dx.doi.org/10.1116/1.1523024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Dhamgaye, V. P., G. S. Lodha, B. Gowri Sankar und C. Kant. „Beamline BL-07 at Indus-2: a facility for microfabrication research“. Journal of Synchrotron Radiation 21, Nr. 1 (02.11.2013): 259–63. http://dx.doi.org/10.1107/s1600577513024934.

Der volle Inhalt der Quelle
Annotation:
The X-ray lithography beamline on Indus-2 is now operational, with two modes of operation. With a pair of X-ray mirrors it is possible to tune the energy spectrum between 1 and 20 keV with a controlled spectral bandwidth. In its `no optics' mode, hard X-rays up to 40 keV are available. Features and performance of the beamline are presented along with some example structures. Structures fabricated include honeycomb structures in PMMA using a stainless steel stencil mask and a compound refractive X-ray lens using a polyimide–gold mask in SU-8.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

DeMarco, Anthony J., und John Melngailis. „Lateral growth of focused ion beam deposited platinum for stencil mask repair“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 17, Nr. 6 (1999): 3154. http://dx.doi.org/10.1116/1.590971.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Yamashita, Hiroshi, Eiichi Nomura, Shoko Manako, Hideo Kobinata, Ken Nakajima und Hiroshi Nozue. „Proximity effect correction by the GHOST method using a scattering stencil mask“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 17, Nr. 6 (1999): 2860. http://dx.doi.org/10.1116/1.591084.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Shade, Paul A., Sang-Lan Kim, Robert Wheeler und Michael D. Uchic. „Stencil mask methodology for the parallelized production of microscale mechanical test samples“. Review of Scientific Instruments 83, Nr. 5 (Mai 2012): 053903. http://dx.doi.org/10.1063/1.4720944.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Puce, Salvatore, Elisa Sciurti, Francesco Rizzi, Barbara Spagnolo, Antonio Qualtieri, Massimo De Vittorio und Urs Staufer. „3D-microfabrication by two-photon polymerization of an integrated sacrificial stencil mask“. Micro and Nano Engineering 2 (März 2019): 70–75. http://dx.doi.org/10.1016/j.mne.2019.01.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Yoshizawa, Masaki. „Sub-50 nm stencil mask for low-energy electron-beam projection lithography“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 20, Nr. 6 (2002): 3021. http://dx.doi.org/10.1116/1.1521739.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Okagawa, T., K. Matsuoka, Y. Kojima, A. Yoshida, S. Matsui, I. Santo, N. Anazawa und T. Kaito. „Inspection of stencil mask using transmission electrons for character projection electron beam lithography“. Microelectronic Engineering 46, Nr. 1-4 (Mai 1999): 279–82. http://dx.doi.org/10.1016/s0167-9317(99)00081-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Kim, B. „Optimization of the temperature distribution across stencil mask membranes under ion beam exposure“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 16, Nr. 6 (November 1998): 3602. http://dx.doi.org/10.1116/1.590312.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Arscott, Steve. „On evaporation via an inclined rotating circular lift-off shadow or stencil mask“. Journal of Vacuum Science & Technology B 37, Nr. 1 (Januar 2019): 011602. http://dx.doi.org/10.1116/1.5057404.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Shih, Fu-Yu, Shao-Yu Chen, Cheng-Hua Liu, Po-Hsun Ho, Tsuei-Shin Wu, Chun-Wei Chen, Yang-Fang Chen und Wei-Hua Wang. „Residue-free fabrication of high-performance graphene devices by patterned PMMA stencil mask“. AIP Advances 4, Nr. 6 (Juni 2014): 067129. http://dx.doi.org/10.1063/1.4884305.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Couderc, Sandrine, Vincent Blech und Beomjoon Kim. „New Surface Treatment and Microscale/Nanoscale Surface Patterning Using Electrostatically Clamped Stencil Mask“. Japanese Journal of Applied Physics 48, Nr. 9 (24.09.2009): 095007. http://dx.doi.org/10.1143/jjap.48.095007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Mekaru, Harutaka, Takayuki Takano, Yoshiaki Ukita, Yuichi Utsumi und Masaharu Takahashi. „A Si stencil mask for deep X-ray lithography fabricated by MEMS technology“. Microsystem Technologies 14, Nr. 9-11 (09.01.2008): 1335–42. http://dx.doi.org/10.1007/s00542-007-0513-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Presmanes, Lionel, Vignesh Gunasekaran, Yohann Thimont, Inthuga Sinnarasa, Antoine Barnabe, Philippe Tailhades, Frédéric Blanc, Chabane Talhi und Philippe Menini. „Sub-ppm NO2 Sensing in Temperature Cycled Mode with Ga Doped ZnO Thin Films Deposited by RF Sputtering“. Proceedings 14, Nr. 1 (19.06.2019): 48. http://dx.doi.org/10.3390/proceedings2019014048.

Der volle Inhalt der Quelle
Annotation:
In this work Ga doped ZnO thin films have been deposited by RF magnetron sputtering onto a silicon micro-hotplate and their structural, microstructural and gas sensing properties have been studied. ZnO:Ga thin film with a thickness of 50 nm has been deposited onto a silicon based micro-hotplates without any photolithography process thanks to a low cost and reliable stencil mask process. Sub-ppm sensing (500 ppb) of NO2 gas at low temperature (50 °C) has been obtained with promising responses R/R0 up to 18.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Letzkus, F., J. Butschke, B. Höfflinger, M. Irmscher, C. Reuter, R. Springer, A. Ehrmann und J. Mathuni. „Dry etch improvements in the SOI wafer flow process for IPL stencil mask fabrication“. Microelectronic Engineering 53, Nr. 1-4 (Juni 2000): 609–12. http://dx.doi.org/10.1016/s0167-9317(00)00388-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

MAEDA, Norihiro, Tasuku NAKAHARA und Kazuyuki MINAMI. „Development of transfer seal type of thin-film stencil mask for reactive ion etching“. Proceedings of Conference of Chugoku-Shikoku Branch 2019.57 (2019): 411. http://dx.doi.org/10.1299/jsmecs.2019.57.411.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

MINAMI, Kazuyuki, Mabito TSUKIMORI und Katsuya SATO. „3307 Oxygen Reactive Ion Etching of Poly(L-Lactide) by using Flexible Stencil Mask“. Proceedings of the JSME annual meeting 2007.7 (2007): 301–2. http://dx.doi.org/10.1299/jsmemecjo.2007.7.0_301.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Niizeki, T., H. Kubota, Y. Ando und T. Miyazaki. „Fabrication of ferromagnetic single-electron tunneling devices by utilizing metallic nanowire as hard mask stencil“. Journal of Applied Physics 97, Nr. 10 (15.05.2005): 10C909. http://dx.doi.org/10.1063/1.1850408.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Sharma, Intu, Yogita Batra, V. Flauraud, Jürgen Brugger und Bodh Raj Mehta. „Growth of Large-Area 2D MoS2 Arrays at Pre-Defined Locations Using Stencil Mask Lithography“. Journal of Nanoscience and Nanotechnology 18, Nr. 3 (01.03.2018): 1824–32. http://dx.doi.org/10.1166/jnn.2018.14265.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Kobinata, Hideo, Hiroshi Yamashita, Eiichi Nomura, Ken Nakajima und Yukinori Kuroki. „Proximity Effect Correction by Pattern Modified Stencil Mask in Large-Field Projection Electron-Beam Lithography“. Japanese Journal of Applied Physics 37, Part 1, No. 12B (30.12.1998): 6767–73. http://dx.doi.org/10.1143/jjap.37.6767.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Sawamura, J., K. Suzuki, S. Omori, I. Ashida und H. Ohnuma. „Approach to full-chip simulation and correction of stencil mask distortion for proximity electron lithography“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 22, Nr. 6 (2004): 3092. http://dx.doi.org/10.1116/1.1821503.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Behringer, U. „Intelligent design splitting in the stencil mask technology used for electron- and ion-beam lithography“. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 11, Nr. 6 (November 1993): 2400. http://dx.doi.org/10.1116/1.586994.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Nah, Jae-Woong, Peter A. Gruber, Paul A. Lauro und Claudius Feger. „Mask and mask-less injection molded solder (IMS) technology for fine pitch substrate bumping“. International Symposium on Microelectronics 2010, Nr. 1 (01.01.2010): 000348–54. http://dx.doi.org/10.4071/isom-2010-tp5-paper5.

Der volle Inhalt der Quelle
Annotation:
We report the results of a new pre-solder bumping technology of injection molded solder (IMS) for fine pitch organic substrates. Pure molten solder is injected through a reusable film mask (mask IMS) or directly injected without a mask (mask-less IMS) on the pads of an organic substrate to overcome the limitation of current pre-solder bumping technologies such as solder paste stencil printing and micro-ball mounting. In the case of mask IMS, targeted solder height over the solder resist (SR) is designed into the mask which has desirable thickness and hole sizes. Three different solder bump heights such as 30, 50, and 70 microns over SR were demonstrated for commercial organic substrates which have a pitch of 150 μm for 5,000 area array pads. To show the extendibility of the mask IMS bumping method to very fine pitch applications, 100 μm pitch bumping of 10,000 pads and 80 μm pitch bumping of 15,000 pads were demonstrated. In mask-less IMS, the pure molten solder is directly filled into the opening volume of the SR. After the injection of molten solder, solidification of the solder under low oxygen leads to solder protrusions above the SR surface because 100 % pure solder is filled into the whole SR opening volume. For a 150 μm pitch commercial substrate, we demonstrated minimum bump heights of 15 μm over the 20 μm thick SR. Since there is no need to align mask and substrate, the maskless IMS method lowers process costs and makes the process more reliable. By manipulating the opening in the SR, it is possible to enable variations in the height of the solder bumps. Flux or formic acid is not needed during solder injection of both described processes, but a low oxygen environment must be maintained. In this paper, we will discuss laboratory scale processes and bump inspection data, along with the discussion of manufacturing strategies for IMS solder bumping technology for fine pitch organic substrates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Kim, Chiho, In-Yong Kang und Yong-Chae Chung. „Optimization of Low-Energy Electron Beam Proximity Lithography Stencil Mask Structure Factors by Monte Carlo Simulation“. Japanese Journal of Applied Physics 43, Nr. 3 (10.03.2004): 1196–98. http://dx.doi.org/10.1143/jjap.43.1196.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Mekaru, Harutaka, Takayuki Takano, Koichi Awazu und Ryutaro Maeda. „Fabrication of a Si stencil mask for the X-ray lithography using a dry etching technique“. Journal of Physics: Conference Series 34 (01.04.2006): 859–64. http://dx.doi.org/10.1088/1742-6596/34/1/142.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Kim, J.-W., Y. Yamagata, B. J. Kim und T. Higuchi. „Direct and dry micro-patterning of nano-particles by electrospray deposition through a micro-stencil mask“. Journal of Micromechanics and Microengineering 19, Nr. 2 (26.01.2009): 025021. http://dx.doi.org/10.1088/0960-1317/19/2/025021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Sharma, Intu, und Bodh Raj Mehta. „KPFM and CAFM based studies of MoS2 (2D)/WS2 heterojunction patterns fabricated using stencil mask lithography technique“. Journal of Alloys and Compounds 723 (November 2017): 50–57. http://dx.doi.org/10.1016/j.jallcom.2017.06.203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Xi, Yue, Tao Wang, Qi Mu, Congcong Huang, Shuming Duan, Xiaochen Ren und Wenping Hu. „Stencil mask defined doctor blade printing of organic single crystal arrays for high-performance organic field-effect transistors“. Materials Chemistry Frontiers 5, Nr. 7 (2021): 3236–45. http://dx.doi.org/10.1039/d1qm00097g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Barnabé, A., M. Lalanne, L. Presmanes, J. M. Soon, Ph Tailhades, C. Dumas, J. Grisolia et al. „Structured ZnO-based contacts deposited by non-reactive rf magnetron sputtering on ultra-thin SiO2/Si through a stencil mask“. Thin Solid Films 518, Nr. 4 (Dezember 2009): 1044–47. http://dx.doi.org/10.1016/j.tsf.2009.03.232.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie