Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Stationary micropolar fluids equations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Stationary micropolar fluids equations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Stationary micropolar fluids equations"
Duarte-Leiva, Cristian, Sebastián Lorca und Exequiel Mallea-Zepeda. „A 3D Non-Stationary Micropolar Fluids Equations with Navier Slip Boundary Conditions“. Symmetry 13, Nr. 8 (26.07.2021): 1348. http://dx.doi.org/10.3390/sym13081348.
Der volle Inhalt der QuelleKocić, Miloš, Živojin Stamenković, Jelena Petrović und Jasmina Bogdanović-Jovanović. „MHD micropolar fluid flow in porous media“. Advances in Mechanical Engineering 15, Nr. 6 (Juni 2023): 168781322311784. http://dx.doi.org/10.1177/16878132231178436.
Der volle Inhalt der QuelleEldabe, N. T., und M. Y. Abou-Zeid. „The Wall Properties Effect on Peristaltic Transport of Micropolar Non-Newtonian Fluid with Heat and Mass Transfer“. Mathematical Problems in Engineering 2010 (2010): 1–40. http://dx.doi.org/10.1155/2010/898062.
Der volle Inhalt der QuelleWENG, HUEI CHU, CHA'O-KUANG CHEN und MIN-HSING CHANG. „Stability of micropolar fluid flow between concentric rotating cylinders“. Journal of Fluid Mechanics 631 (17.07.2009): 343–62. http://dx.doi.org/10.1017/s0022112009007150.
Der volle Inhalt der QuelleXing, Xin, und Demin Liu. „Numerical Analysis and Comparison of Three Iterative Methods Based on Finite Element for the 2D/3D Stationary Micropolar Fluid Equations“. Entropy 24, Nr. 5 (29.04.2022): 628. http://dx.doi.org/10.3390/e24050628.
Der volle Inhalt der QuelleSalemovic, Dusko, Aleksandar Dedic und Bosko Jovanovic. „Micropolar fluid between two coaxial cylinders (numerical approach)“. Theoretical and Applied Mechanics 48, Nr. 2 (2021): 159–69. http://dx.doi.org/10.2298/tam210823012s.
Der volle Inhalt der QuelleBurmasheva, N. V., und E. Yu Prosviryakov. „Exact solutions to the NAVIER–STOKES equations for unidirectional flows of micropolar fluids in a mass force field“. Diagnostics, Resource and Mechanics of materials and structures, Nr. 3 (Juni 2024): 41–63. http://dx.doi.org/10.17804/2410-9908.2024.3.041-063.
Der volle Inhalt der QuelleArnaud, M. M., G. M. de Araùjo, M. M. Freitas und E. F. L. Lucena. „ON A SYSTEM OF EQUATIONS OF A NON-NEWTONIAN MICROPOLAR FLUID IN THE STATIONARY FORM“. Far East Journal of Applied Mathematics 97, Nr. 4 (02.12.2017): 125–42. http://dx.doi.org/10.17654/am097040125.
Der volle Inhalt der QuelleChen, James, James D. Lee und Chunlei Liang. „Constitutive equations of Micropolar electromagnetic fluids“. Journal of Non-Newtonian Fluid Mechanics 166, Nr. 14-15 (August 2011): 867–74. http://dx.doi.org/10.1016/j.jnnfm.2011.05.004.
Der volle Inhalt der QuelleIDO, Yasushi. „Basic Equations of Micropolar Magnetic Fluids“. Transactions of the Japan Society of Mechanical Engineers Series B 70, Nr. 696 (2004): 2065–70. http://dx.doi.org/10.1299/kikaib.70.2065.
Der volle Inhalt der QuelleDissertationen zum Thema "Stationary micropolar fluids equations"
Llerena, Montenegro Henry David. „Sur l'interdépendance des variables dans l'étude de quelques équations de la mécanique des fluides“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM048.
Der volle Inhalt der QuelleThis thesis is devoted to the study of the relationship between the variables in the micropolar fluids equations. This system, which is based on the Navier-Stokes equations, consists in a coupling of two variables: the velocity field vec{u} and the microrotation field vec{w}. Our aim is to provide a better understanding of how information about one variable influences the behavior of the other. To this end, we have divided this thesis into four chapters, where we will study the local regularity properties of Leray-type weak solutions, and later we will focus on the regularity and uniqueness of weak solutions for the stationary case. The first chapter presents a brief physical derivation of the micropolar equations followed by the construction of the Leray-type weak solutions. In Chapter 2, we begin by proving a gain of integrability for both variables vec{u} and vec{w} whenever the velocity belongs to certain Morrey spaces. This result highlights an effect of domination by the velocity. We then show that this effect can also be observed within the framework of the Caffarelli-Kohn-Nirenberg theory, i.e., under an additional smallness hypothesis only on the gradient of the velocity, we can demonstrate that the solution becomes Hölder continuous. For this, we introduce the notion of a partial suitable solution, which is fundamental in this work and represents one of the main novelties. In the last section of this chapter, we derive similar results in the context of the Serrin criterion. In Chapter 3, we focus on the behavior of the L^3-norm of the velocity vec{u} near possible points where regularity may get lost. More precisely, we establish a blow-up criterion for the L^3 norm of the velocity and we improve this result by presenting a concentration phenomenon. We also verify that the limit point L^infty_t L^3_x of the Serrin criterion remains valid for the micropolar fluids equations. Finally, the problem of existence and uniqueness for the stationary micropolar fluids equations is addressed in Chapter 4. Indeed, we prove the existence of weak solutions (vec{u}, vec{w}) in the natural energy space dot{H}^1(mathbb{R}^3) imes H^1(mathbb{R}^3). Moreover, by using the relationship between the variables, we deduce that these solutions are regular. It is worth noting that the trivial solution may not be unique, and to overcome this difficulty, we develop a Liouville-type theorem. Hence, we demonstrate that by imposing stronger decay at infinity only on vec{u}, we can infer the uniqueness of the trivial solution (vec{u},vec{w})=(0,0)
Gumgum, Sevin. „The Dual Reciprocity Boundary Element Method Solution Of Fluid Flow Problems“. Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611605/index.pdf.
Der volle Inhalt der QuelleBuchteile zum Thema "Stationary micropolar fluids equations"
Łukaszewicz, Grzegorz. „Stationary Problems“. In Micropolar Fluids, 59–110. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-0641-5_3.
Der volle Inhalt der QuelleShklyaev, Sergey, und Alexander Nepomnyashchy. „Convection in Binary Liquids: Amplitude Equations for Stationary and Oscillatory Patterns“. In Longwave Instabilities and Patterns in Fluids, 125–208. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7590-7_4.
Der volle Inhalt der QuelleKhapalov, Alexander. „Local Controllability of 2D and 3D Swimmers: The Case of Non-stationary Stokes Equations“. In Bio-Mimetic Swimmers in Incompressible Fluids, 71–89. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-030-85285-6_7.
Der volle Inhalt der QuelleMerkin, John H., Ioan Pop, Yian Yian Lok und Teodor Grosan. „Basic equations and mathematical methods“. In Similarity Solutions for the Boundary Layer Flow and Heat Transfer of Viscous Fluids, Nanofluids, Porous Media, and Micropolar Fluids, 1–21. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-821188-5.00002-3.
Der volle Inhalt der QuelleConca, C., R. Gormaz, E. Ortega und M. Rojas. „Existence and uniqueness of a strong solution for nonhomogeneous micropolar fluids“. In Nonlinear Partial Differential Equations and their Applications - Collège de France Seminar Volume XIV, 213–41. Elsevier, 2002. http://dx.doi.org/10.1016/s0168-2024(02)80012-1.
Der volle Inhalt der Quelle„ON THE EXISTENCE OF SOLUTIONS FOR NON-STATIONARY SECOND-GRADE FLUIDS“. In Navier-Stokes Equations and Related Nonlinear Problems, 15–30. De Gruyter, 1998. http://dx.doi.org/10.1515/9783112319291-003.
Der volle Inhalt der QuelleChimowitz, Eldred H. „Supercritical Adsorption“. In Introduction to Critical Phenomena in Fluids. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195119305.003.0008.
Der volle Inhalt der QuelleGhergu, Marius, und Vicenţiu D. Rădulescu. „Sublinear Perturbations of Singular Elliptic Problems“. In Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, 93–124. Oxford University PressNew York, NY, 2008. http://dx.doi.org/10.1093/oso/9780195334722.003.0004.
Der volle Inhalt der Quelle„Chapter 2 Correctness “IN THE WHOLE” of the Boundary Problems for Equations of One-Dimensional Non-Stationary Motion of a Viscous Gas“. In Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, 39–100. Elsevier, 1990. http://dx.doi.org/10.1016/s0168-2024(08)70071-7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Stationary micropolar fluids equations"
Lasinger, Katrin, Christoph Vogel und Konrad Schindler. „Volumetric Flow Estimation for Incompressible Fluids Using the Stationary Stokes Equations“. In 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017. http://dx.doi.org/10.1109/iccv.2017.280.
Der volle Inhalt der QuelleNajafi, A., F. Daneshmand und S. R. Mohebpour. „Analysis of Vibrating Micropolar Plate in Contact With a Fluid“. In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31036.
Der volle Inhalt der QuelleNaumann, Joachim. „On weak solutions to the equations of non-stationary motion of heat-conducting incompressible viscous fluids: defect measure and energy equality“. In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-19.
Der volle Inhalt der QuelleMatousˇek, Va´clav. „Pressure Drop in Slurry Pipe With Stationary Deposit“. In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37322.
Der volle Inhalt der QuelleShan, Hua, Sung-Eun Kim und Bong Rhee. „A Fully Coupled Flow and 6-DOF Motion Solver in Multiple Reference Frames“. In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-3210.
Der volle Inhalt der QuelleMatousˇek, Va´clav, und Jan Krupicˇka. „Liquid-Solid Flows Above Deposit in Pipe: Prediction of Hydraulic Gradient and Deposit Thickness“. In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78125.
Der volle Inhalt der QuelleFleig, Oliver, und Chuichi Arakawa. „Aeroacoustics Simulation Around a Wind Turbine Blade Using Compressible LES and Linearized Euler Equations“. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45368.
Der volle Inhalt der QuellePérez, José, Rafael Baez, Jose Terrazas, Arturo Rodríguez, Daniel Villanueva, Olac Fuentes, Vinod Kumar, Brandon Paez und Abdiel Cruz. „Physics-Informed Long-Short Term Memory Neural Network Performance on Holloman High-Speed Test Track Sled Study“. In ASME 2022 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fedsm2022-86953.
Der volle Inhalt der QuelleMukherjee, Abhijit, und Satish G. Kandlikar. „Numerical Study of an Evaporating Meniscus on a Moving Heated Surface“. In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56678.
Der volle Inhalt der QuelleMishra, Srishti, Mukul Tomar, Adeel Ahmad, Satvik Jain und Naveen Kumar. „Numerical Study of Forced Convection in Different Fluids From Stationary Heated Cylinders in a Square Enclosure“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87032.
Der volle Inhalt der Quelle