Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Stationary heat conduction.

Zeitschriftenartikel zum Thema „Stationary heat conduction“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Stationary heat conduction" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Milka, Zdeněk. „Finite element solution of a stationary heat conduction equation with the radiation boundary condition“. Applications of Mathematics 38, Nr. 1 (1993): 67–79. http://dx.doi.org/10.21136/am.1993.104535.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Velinov, T., V. Gusev und K. Bransalov. „Non-stationary heat conduction of a porous medium“. Applied Physics A Solids and Surfaces 54, Nr. 1 (Januar 1992): 6–18. http://dx.doi.org/10.1007/bf00348122.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Karalevich, Uladzimir V., und Dmitrij G. Medvedev. „Influence of extended heat sources on the temperature distribution in profiled polar-orthotropic annular plates with heat-insulated bases“. Journal of the Belarusian State University. Mathematics and Informatics, Nr. 2 (05.08.2021): 99–104. http://dx.doi.org/10.33581/2520-6508-2021-2-99-104.

Der volle Inhalt der Quelle
Annotation:
The solution of the stationary heat conduction problem for profiled polar-orthotropic annular plates with heat-insulated bases from N extended heat sources at their external border is presented. The temperature distribution in such plates will be non-axisymmetric. The solution of the stationary heat conduction problem for anisotropic annular plates of an random profile is resolved through the solution of the corresponding Volterra integral equation of the second kind. The formula of a temperature calculations in anisotropic annular plates of an random profile is given. The exact solution of stationary heat conduction problem for polar-orthotropic annular plate of an exponential profile is recorded. The temperature distribution in such anisotropic plate from N extended heat sources at its outer border is more complex than in the case of temperature distribution from N point heat sources at their external border.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ciałkowski, M. J., A. Frąckowiak und K. Grysa. „Physical regularization for inverse problems of stationary heat conduction“. Journal of Inverse and Ill-posed Problems 15, Nr. 4 (Juli 2007): 347–64. http://dx.doi.org/10.1515/jiip.2007.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yacenko, Konstantin M., Yri Y. Rakov und Konstantin V. Slyusarskiy. „The inverse stationary heat conduction problem for a cuboid“. MATEC Web of Conferences 91 (20.12.2016): 01008. http://dx.doi.org/10.1051/matecconf/20179101008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Liu, I.-Shih, M. A. Rincon und I. Müller. „Iterative approximation of stationary heat conduction in extended thermodynamics“. Continuum Mechanics and Thermodynamics 14, Nr. 5 (01.10.2002): 483–93. http://dx.doi.org/10.1007/s001610200090.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kartashov, E. M. „ANALYTICAL SOLUTIONS OF HYPERBOLIC MODELS OF NON-STATIONARY HEAT CONDUCTION“. Fine Chemical Technologies 13, Nr. 2 (28.04.2018): 81–90. http://dx.doi.org/10.32362/2410-6593-2018-13-2-81-90.

Der volle Inhalt der Quelle
Annotation:
Practically important problems of non-stationary heat conduction for hyperbolic transport models are considered. An analytical approach based on contour integration of operational solutions of hyperbolic models is developed. This leads to new integral relationships convenient for numerical experiments. The equivalence of new functional constructions and known analytical solutions of this class of problems is shown. On the basis of the obtained relations, the wave character of the nonstationary thermal conductivity is described taking into account the finite velocity of heat propagation. The jumps at the front of the heat wave are calculated. The proposed approach gives effective results when studying the thermal reaction to heating or cooling regions bounded from within by a flat surface, either a cylindrical cavity or a spherical surface.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bart, G. C. J., C. J. Hoogendoorn und P. B. J. Schaareman. „Stationary and transient heat conduction in a non homogeneous material“. Wärme- und Stoffübertragung 20, Nr. 4 (Dezember 1986): 269–72. http://dx.doi.org/10.1007/bf01002417.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chernukha, O. Yu, und P. R. Pelekh. „Stationary heat conduction processes in bodies of randomly inhomogeneous structure“. Journal of Mathematical Sciences 190, Nr. 6 (13.04.2013): 848–58. http://dx.doi.org/10.1007/s10958-013-1293-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bufler, H. „Stationary heat conduction in a macro- and microperiodically layered solid“. Archive of Applied Mechanics (Ingenieur Archiv) 70, Nr. 1-3 (22.02.2000): 103–14. http://dx.doi.org/10.1007/s004199900045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Picco, Marco, Alberto Beltrami und Marco Marengo. „Stationary and Transient Heat Conduction in Multilayer Non-Homogeneous Stratigraphy“. Energy Procedia 78 (November 2015): 3252–57. http://dx.doi.org/10.1016/j.egypro.2015.11.695.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Bagdasaryan, Vazgen, und Jan Szołucha. „Stationary heat conduction in a solid with functionally graded thermal properties“. Przegląd Naukowy Inżynieria i Kształtowanie Środowiska 28, Nr. 4 (29.12.2019): 539–46. http://dx.doi.org/10.22630/pniks.2019.28.4.49.

Der volle Inhalt der Quelle
Annotation:
In the paper the solutions for stationary heat conduction in a two dimensional composite with functionally graded heat properties were obtained. Numerical solutions for the taken boundary conditions are shown for several types of changes of composite’s thermal conductivity. The solutions were obtained with the use of the finite-difference method.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Zhernovyi, Yu V. „Conditions for one-valued solvability of nonlinear stationary heat-conduction problems“. Ukrainian Mathematical Journal 51, Nr. 4 (April 1999): 630–35. http://dx.doi.org/10.1007/bf02591765.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Kołodziejczyk, Waldemar, und Roman Kulchytsky-Zhyhailo. „Axisymmetric Heat Conduction Problem for a Half-Space Covered with a Laminated Coating of Periodic Structure“. Solid State Phenomena 199 (März 2013): 575–80. http://dx.doi.org/10.4028/www.scientific.net/ssp.199.575.

Der volle Inhalt der Quelle
Annotation:
The paper deals with a stationary heat conduction problem for a microperiodic, two-layered coating on a homogeneous half-space. The distribution of temperature and heat fluxes are obtained within the frame of the homogenized model with microlocal parameters [1,2, and within the framework of the classical heat conduction problem for a periodically layered structure. The influence of number of layers in the coating on the heat flux and temperature is analyzed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Beikircher, T., N. Benz und W. Spirkl. „Gas Heat Conduction in Evacuated Flat-Plate Solar Collectors: Analysis and Reduction“. Journal of Solar Energy Engineering 117, Nr. 3 (01.08.1995): 229–35. http://dx.doi.org/10.1115/1.2847807.

Der volle Inhalt der Quelle
Annotation:
In stationary heat-loss experiments, the thermal losses by gas conduction of an evacuated flat-plate solar collector (EFPC) were experimentally determined for different values of interior gas pressure. The experiments were carried out with air and argon in the pressure range from 10−3 to 104 Pa. For air, loss reduction sets in at 100 Pa, whereas at 0.1 Pa heat conduction is almost completely suppressed. Using argon as filling gas, gas conduction is reduced by 30 percent (compared to air) at moderate interior pressures of 1000 Pa. With decreasing pressure this reduction is even greater (50 percent reduction at 10 Pa). A theory was developed to calculate thermal losses by gas conduction in an EFPC: Fourier’s stationary heat conduction equation was solved numerically (method of finite differences) for the special geometry of the collector. From kinetic gas theory a formula for the pressure dependency of the thermal conductivity was derived covering the entire pressure range. The theory has been validated experimentally for the gases air and argon. Calculations for krypton and xenon show a possible gas conduction loss reduction of 60–70 percent and 75–85 percent (with respect to air, depending on gas pressure), corresponding to a reduction of the overall collector losses of up to 40 percent.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Khorrami, Mohammad, und Amir Aghamohammadi. „Thermal conduction in a quasi-stationary one-dimensional lattice system“. International Journal of Modern Physics B 33, Nr. 17 (10.07.2019): 1950178. http://dx.doi.org/10.1142/s0217979219501789.

Der volle Inhalt der Quelle
Annotation:
A system of nearest-neighbor interaction on a one-dimensional lattice is investigated, which has a quasi-stationary (and position-dependent) temperature profile. The rates of heat transfer and entropy change, as well as the diffusion equation for the temperature are studied. A q-state Potts model, and its special case, a two-state Ising model, are considered as an example.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Zhu, Wei Bing, Sheng Ren Zhou und He Shun Wang. „Thermal Deformation in a Static Pressure Dry Gas Seal“. Applied Mechanics and Materials 217-219 (November 2012): 2406–9. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.2406.

Der volle Inhalt der Quelle
Annotation:
Based on the basic principles of heat transfer, the two-dimensional stable state cylindrical coordinate solid heat conduction differential equation having no inner heat source is established. Use the ANSYS software to establish the temperature field finite element analysis model of rotating and stationary rings and carry on the solution to the temperature field. The temperature distributing rules of rotating and stationary rings are obtained at the same time. According to thermo-elastic deformation theory, numerical analysis method and separation method are applied to resolve and analyze thermal-structural coupling deformation of rotating and stationary rings.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Müller, Ingo, und Tommaso Ruggeri. „Stationary heat conduction in radially, symmetric situations – an application of extended thermodynamics“. Journal of Non-Newtonian Fluid Mechanics 119, Nr. 1-3 (Mai 2004): 139–43. http://dx.doi.org/10.1016/j.jnnfm.2003.03.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Gilbert, Thomas. „Heat conduction and the nonequilibrium stationary states of stochastic energy exchange processes“. Journal of Statistical Mechanics: Theory and Experiment 2017, Nr. 8 (22.08.2017): 083205. http://dx.doi.org/10.1088/1742-5468/aa78b0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Perkowski, Dariusz, Piotr Sebestianiuk und Jakub Augustyniak. „Axisymmetric stationary heat conduction problem for half-space with temperature-dependent properties“. Thermal Science 24, Nr. 3 Part B (2020): 2137–50. http://dx.doi.org/10.2298/tsci181206109p.

Der volle Inhalt der Quelle
Annotation:
The study examines problems of heat conduction in a half-space with a thermal conductivity coefficient that is dependent on temperature. A boundary plane is heated locally in a circle zone at a given temperature as a function of radius. A solution is obtained for any function that describes temperature in the heating zone. Two special cases are investigated in detail, namely Case 1 with given constant temperature in the circle zone and Case 2 with temperature given as a function of radius, r. The temperature of the boundary on the exterior of the heating zone is assumed as zero. The Hankel transform method is applied to obtain a solution for the formulated problem. The effect of thermal properties on temperature distributions in the considered body is investigated. The obtained results were compared with finite element method model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Suzuki, Yoshiro. „New multiscale analysis SDM (1) : stationary heat conduction analysis of heterogeneous materials“. Proceedings of The Computational Mechanics Conference 2014.27 (2014): 320–22. http://dx.doi.org/10.1299/jsmecmd.2014.27.320.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Cialkowski, Michael J., und Andrzej Frąckowiak. „Solution of the stationary 2D inverse heat conduction problem by Treffetz method“. Journal of Thermal Science 11, Nr. 2 (Mai 2002): 148–62. http://dx.doi.org/10.1007/s11630-002-0036-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Denisov, A. M., und S. I. Solov'eva. „Determination of the coefficient in the stationary nonlinear equation of heat conduction“. Computational Mathematics and Modeling 6, Nr. 1 (1995): 1–4. http://dx.doi.org/10.1007/bf01128148.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Denisov, A. M., und S. I. Solov'eva. „Unique solvability of an inverse problem for the stationary heat conduction equation“. Computational Mathematics and Modeling 5, Nr. 2 (1994): 162–64. http://dx.doi.org/10.1007/bf01130281.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Koval'chuk, B. V., und G. P. Lopushanskaya. „The Green's function method in stationary and nonstationary nonlinear heat-conduction problems“. Journal of Soviet Mathematics 66, Nr. 6 (Oktober 1993): 2587–91. http://dx.doi.org/10.1007/bf01097863.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Reséndiz-Flores, Edgar O., und Irma D. García-Calvillo. „Application of the finite pointset method to non-stationary heat conduction problems“. International Journal of Heat and Mass Transfer 71 (April 2014): 720–23. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.12.077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Barcelos, H. M., C. F. Loeffler und L. O. C. Lara. „A novel Boundary Element model for solving stationary inhomogeneous heat conduction problems“. Journal of Physics: Conference Series 1826, Nr. 1 (01.03.2021): 012003. http://dx.doi.org/10.1088/1742-6596/1826/1/012003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Protsiuk, B. V. „Determination of quasi-static thermoelastic state of layered thermosensitive plates“. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, Nr. 1 (2019): 162–65. http://dx.doi.org/10.17721/1812-5409.2019/1.37.

Der volle Inhalt der Quelle
Annotation:
The technique of determining the quasistatic thermoelastic state of the layered thermosensitive plates free of load is illustrated. Much attention is paid to finding analytical-numerical solutions of one-dimensional non-stationary heat conduction problems taking into account the temperature dependences of the thermal and temperature conductivity coefficients. Their finding involves use of the Kirchhoff transformation, generalized functions, Green's functions of the corresponding linear heat conduction problem, exact sums of the series, in particular those for which the Gibbs effect takes place, linear splines and solving the received recurrent systems of nonlinear algebraic equations relative to the values in the nodes of the spline of the Kirchhoff variable on the layer division surfaces and the derivative in time on inner flat-parallel surfaces of layers. The results of numerical calculations of temperature fields in two-layer plates with different thicknesses of layers and the external surface heated by a constant heat flux are presented. The accuracy of the found solution is investigated. The comparison of the temperature fields, which are determined assuming simple nonlinearity, stable thermophysical characteristics with the ones based on the exact solution of the corresponding nonlinear stationary heat conduction problem is fulfilled.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Artuso, R., V. Benza, A. Frigerio, V. Gorini und E. Montaldi. „The stationary state and the heat equation for a variant of Davies' model of heat conduction“. Journal of Statistical Physics 38, Nr. 5-6 (März 1985): 1051–70. http://dx.doi.org/10.1007/bf01010429.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Kulchytsky-Zhyhailo, Roman, Stanisław J. Matysiak und Dariusz M. Perkowski. „Heat Conduction Problems in a Homogeneous Pipe with Inner Nonhomogeneous Coating“. International Journal of Heat and Technology 39, Nr. 1 (28.02.2021): 23–31. http://dx.doi.org/10.18280/ijht.390103.

Der volle Inhalt der Quelle
Annotation:
The paper deals with the analysis of nonhomogeneous inner coatings for a homogeneous pipe with respect of heat loss from the outer pipe surface. Two kinds of the coatings in the form of ring layers are considered: (1º) with the thermal properties changing continuously along the coating thickness (called the coating A), (2º) multilayered coatings with piecewise continuous thermal properties (called the coatings B). The analysis is connected with the stationary heat conduction problems. Some special cases of the coatings A and B are investigated. The obtained analytical results and the comparison of the coatings are presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Komorowski, Tomasz, Stefano Olla und Marielle Simon. „An open microscopic model of heat conduction: evolution and non-equilibrium stationary states“. Communications in Mathematical Sciences 18, Nr. 3 (2020): 751–80. http://dx.doi.org/10.4310/cms.2020.v18.n3.a8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Madera, A. G. „Numerical method for analyzing a stochastic stationary heat-conduction equation with random coefficients“. Journal of Engineering Physics and Thermophysics 62, Nr. 6 (Juni 1992): 643–49. http://dx.doi.org/10.1007/bf00851893.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Dubinskaya, V. Yu. „Averaging of the stationary problem of heat conduction in a thin inhomogeneous plate“. USSR Computational Mathematics and Mathematical Physics 30, Nr. 2 (Januar 1990): 201–2. http://dx.doi.org/10.1016/0041-5553(90)90101-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Fesenko, A. A. „Mixed Problems of Stationary Heat Conduction and Elasticity Theory for a Semiinfinite Layer“. Journal of Mathematical Sciences 205, Nr. 5 (14.02.2015): 706–18. http://dx.doi.org/10.1007/s10958-015-2277-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Barbera, Elvira, und Francesca Brini. „On stationary heat conduction in 3D symmetric domains: an application of extended thermodynamics“. Acta Mechanica 215, Nr. 1-4 (04.06.2010): 241–60. http://dx.doi.org/10.1007/s00707-010-0330-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Mansoor, Saad Bin, und Bekir S. Yilbas. „Entropy Generation Rate for Stationary Ballistic-Diffusive Heat Conduction in a Rectangular Flake“. Journal of Computational and Theoretical Transport 50, Nr. 2 (23.02.2021): 87–101. http://dx.doi.org/10.1080/23324309.2021.1896553.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Glot, I., V. P. Matveenko, S. Khripchenko und I. Shardakov. „Analysis of Thermal Conditions within the Flow Conduits of MHD-Devices“. Solid State Phenomena 243 (Oktober 2015): 35–42. http://dx.doi.org/10.4028/www.scientific.net/ssp.243.35.

Der volle Inhalt der Quelle
Annotation:
The paper presents an experimental and theoretical approach to the modeling of non-stationary thermal processes in the elements of MHD-devices. The theoretical part of the approach is based on a mathematical formulation of the non-stationary heat conduction problem and its numerical implementation by the finite-element method. The experimental part involves a series of preliminary and verification tests. A comparison of the results obtained in these experiments with the calculated data allowed us to specify heat conduction coefficients and to pick up space-time parameters of the algorithm to ensure a high degree of adequacy of mathematical description of thermal fields. The approach made it possible to set the process conditions under which the necessary level of preliminary heating of a conduit of the MHD-pump can be achieved without loss of its mechanical strength.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Beikircher, T., und W. Spirkl. „Analysis of Gas Heat Conduction in Evacuated Tube Solar Collectors“. Journal of Solar Energy Engineering 118, Nr. 3 (01.08.1996): 156–61. http://dx.doi.org/10.1115/1.2870898.

Der volle Inhalt der Quelle
Annotation:
We investigated the gas heat conduction in two types of evacuated tubular solar collectors for a wide range of Knudsen numbers. For tube-in-tube collectors, we generalized a solution of the gas kinetic Boltzmann equation, which has been obtained by the four-momentum method, to polyatomic gases. The resulting equation coincides with Sherman’s interpolation formula. For a plate-in-tube collector, we measured the stationary heat loss for gas pressures varying between 10−2 and 104 Pa. The accuracy of an earlier experiment was improved. For analysis we applied the temperature jump method: a heat conduction equation with boundary conditions of the third kind involving the temperature gradient and the pressure was numerically solved. The results with the temperature jump method agree with the experimental values nearly within the error bands. We also applied Sherman’s interpolation formula and found, as expected, that the heat conduction as function of the pressure is too steep. For both types of collectors, the influence of geometric parameters was theoretically studied.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Karalevich, Uladzimir V., und Dmitrij G. Medvedev. „The influence of the length of heat sources on the external border on the temperature distribution in profiled polar-orthotropic ring plates taking into account there heat exchange with the external environment“. Journal of the Belarusian State University. Mathematics and Informatics, Nr. 3 (08.12.2020): 86–91. http://dx.doi.org/10.33581/2520-6508-2020-3-86-91.

Der volle Inhalt der Quelle
Annotation:
We study the influence of N extended heat sources at external boundaries on the nonaxisymmetric temperature distribution on profiled polar-orthotropic ring plates and take into account heat exchange with the external environment. The solution of the stationary heat conduction problem for anisotropic annular plates of a random profile is resolved through the solution of the corresponding Volterra integral equation of the second kind. The formula of a temperature calculations in anisotropic annular plates of an random profile is given. The exact solution of stationary heat conductivity problem for a reverse conical polar-orthotropic ring plate is recorded. The temperature distribution in such anisotropic plate from N extended heat sources at its outer border is more complex than in the case of temperature distribution from N point heat sources at their external border.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Huang, Zhi Qin, Pei Ying Quan und Yong Qing Pan. „Research on the Issue of LED’s Cooling Based on Heat Conduction Equations“. Advanced Materials Research 507 (April 2012): 137–41. http://dx.doi.org/10.4028/www.scientific.net/amr.507.137.

Der volle Inhalt der Quelle
Annotation:
With the rapid development of power type LED, the issue of the cooling of LED has been prominent. How to make the heat generated by LED chip go out quickly in order to cool the LED chip has become an urgent problem. The form of heat goes through the substrate has been widely used and has become the best way to solve the heat problem. There are three types of LED substrate. They are metal substrate, ceramic substrate and composite substrate. At first, In this paper I analyze the theoretical of three-dimensional non-steady state and steady state heat conduction equation, then the three-dimensional model is simplified as one-dimensional model and I get the results of heat conduction equation under the one-dimensional stationary and non-steady state.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Lin, Frank K. T., G. J. Hwang, S. C. Wong und C. Y. Soong. „Numerical Computation of Turbulent Flow and Heat Transfer in a Radially Rotating Channel with Wall Conduction“. International Journal of Rotating Machinery 7, Nr. 3 (2001): 209–22. http://dx.doi.org/10.1155/s1023621x01000197.

Der volle Inhalt der Quelle
Annotation:
This work is concerned with numerical computation of turbulent flow and heat transfer in experimental models of a radially rotating channel used for turbine blade cooling. Reynolds-averaged Navier-Stokes and energy equations with a two-layer turbulence model are employed as the computational model of the flow and temperature fields. The computations are carried out by the software package of “CFX-TASCflow”. Heat loss from the channel walls through heat conduction is considered. Results at various rotational conditions are obtained and compared with the baseline stationary cases. The influences of the channel rotation, through-flow, wall conduction and the channel extension on flow and heat transfer characteristics are explored. Comparisons of the present predictions and available experimental data are also presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Rubtsov, V. V., und Yu A. Surinov. „Methods of solving non-stationary problems of the theory of radiation-conduction heat transfer“. USSR Computational Mathematics and Mathematical Physics 29, Nr. 6 (Januar 1989): 73–79. http://dx.doi.org/10.1016/s0041-5553(89)80009-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Barbera, Elvira, Francesca Brini und Giovanna Valenti. „Some non-linear effects of stationary heat conduction in 3D domains through extended thermodynamics“. EPL (Europhysics Letters) 98, Nr. 5 (01.06.2012): 54004. http://dx.doi.org/10.1209/0295-5075/98/54004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Matsevityy, Yu, A. Kostikov, N. Safonov und V. Ganchin. „To the solution of non-stationary non-linear boundary-value inverse heat conduction problems“. Journal of Mechanical Engineering 20, Nr. 4 (31.12.2017): 15–23. http://dx.doi.org/10.15407/pmach2017.04.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Janáčová, Dagmar, Hana Charvátová, Karel Kolomazník, Miloslav Fialka, Pavel Mokrejš und Vladimír Vašek. „Interactive software application for calculation of non-stationary heat conduction in a cylindrical body“. Computer Applications in Engineering Education 21, Nr. 1 (18.06.2010): 89–94. http://dx.doi.org/10.1002/cae.20453.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Smyrlis, Yiorgos-Sokratis, und Andreas Karageorghis. „The Method of Fundamental Solutions for Stationary Heat Conduction Problems in Rotationally Symmetric Domains“. SIAM Journal on Scientific Computing 27, Nr. 4 (Januar 2006): 1493–512. http://dx.doi.org/10.1137/040615213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

OCHIAI, Yoshihiro, und Kouta HARADA. „Axial Symmetric Stationary Heat Conduction Analysis on Functional Gradient Materials by Triple-Reciprocity BEM“. Transactions of the Japan Society of Mechanical Engineers Series B 73, Nr. 735 (2007): 2290–96. http://dx.doi.org/10.1299/kikaib.73.2290.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Chernyshov, A. D. „Solution of stationary heat-conduction problems for curvilinear regions using eigenfunction expansions (fundamental solutions)“. Journal of Engineering Physics and Thermophysics 82, Nr. 1 (Januar 2009): 163–69. http://dx.doi.org/10.1007/s10891-009-0179-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Matsevityi, Yu M., S. V. Alekhina, V. T. Borukhov, G. M. Zayats und A. O. Kostikov. „Identification of the Thermal Conductivity Coefficient for Quasi-Stationary Two-Dimensional Heat Conduction Equations“. Journal of Engineering Physics and Thermophysics 90, Nr. 6 (November 2017): 1295–301. http://dx.doi.org/10.1007/s10891-017-1686-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Reséndiz-Flores, Edgar O., und Irma D. García-Calvillo. „Numerical solution of 3D non-stationary heat conduction problems using the Finite Pointset Method“. International Journal of Heat and Mass Transfer 87 (August 2015): 104–10. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.03.084.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie