Auswahl der wissenschaftlichen Literatur zum Thema „Stationary heat conduction“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Stationary heat conduction" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Stationary heat conduction"

1

Milka, Zdeněk. „Finite element solution of a stationary heat conduction equation with the radiation boundary condition“. Applications of Mathematics 38, Nr. 1 (1993): 67–79. http://dx.doi.org/10.21136/am.1993.104535.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Velinov, T., V. Gusev und K. Bransalov. „Non-stationary heat conduction of a porous medium“. Applied Physics A Solids and Surfaces 54, Nr. 1 (Januar 1992): 6–18. http://dx.doi.org/10.1007/bf00348122.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Karalevich, Uladzimir V., und Dmitrij G. Medvedev. „Influence of extended heat sources on the temperature distribution in profiled polar-orthotropic annular plates with heat-insulated bases“. Journal of the Belarusian State University. Mathematics and Informatics, Nr. 2 (05.08.2021): 99–104. http://dx.doi.org/10.33581/2520-6508-2021-2-99-104.

Der volle Inhalt der Quelle
Annotation:
The solution of the stationary heat conduction problem for profiled polar-orthotropic annular plates with heat-insulated bases from N extended heat sources at their external border is presented. The temperature distribution in such plates will be non-axisymmetric. The solution of the stationary heat conduction problem for anisotropic annular plates of an random profile is resolved through the solution of the corresponding Volterra integral equation of the second kind. The formula of a temperature calculations in anisotropic annular plates of an random profile is given. The exact solution of stationary heat conduction problem for polar-orthotropic annular plate of an exponential profile is recorded. The temperature distribution in such anisotropic plate from N extended heat sources at its outer border is more complex than in the case of temperature distribution from N point heat sources at their external border.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ciałkowski, M. J., A. Frąckowiak und K. Grysa. „Physical regularization for inverse problems of stationary heat conduction“. Journal of Inverse and Ill-posed Problems 15, Nr. 4 (Juli 2007): 347–64. http://dx.doi.org/10.1515/jiip.2007.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yacenko, Konstantin M., Yri Y. Rakov und Konstantin V. Slyusarskiy. „The inverse stationary heat conduction problem for a cuboid“. MATEC Web of Conferences 91 (20.12.2016): 01008. http://dx.doi.org/10.1051/matecconf/20179101008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Liu, I.-Shih, M. A. Rincon und I. Müller. „Iterative approximation of stationary heat conduction in extended thermodynamics“. Continuum Mechanics and Thermodynamics 14, Nr. 5 (01.10.2002): 483–93. http://dx.doi.org/10.1007/s001610200090.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kartashov, E. M. „ANALYTICAL SOLUTIONS OF HYPERBOLIC MODELS OF NON-STATIONARY HEAT CONDUCTION“. Fine Chemical Technologies 13, Nr. 2 (28.04.2018): 81–90. http://dx.doi.org/10.32362/2410-6593-2018-13-2-81-90.

Der volle Inhalt der Quelle
Annotation:
Practically important problems of non-stationary heat conduction for hyperbolic transport models are considered. An analytical approach based on contour integration of operational solutions of hyperbolic models is developed. This leads to new integral relationships convenient for numerical experiments. The equivalence of new functional constructions and known analytical solutions of this class of problems is shown. On the basis of the obtained relations, the wave character of the nonstationary thermal conductivity is described taking into account the finite velocity of heat propagation. The jumps at the front of the heat wave are calculated. The proposed approach gives effective results when studying the thermal reaction to heating or cooling regions bounded from within by a flat surface, either a cylindrical cavity or a spherical surface.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bart, G. C. J., C. J. Hoogendoorn und P. B. J. Schaareman. „Stationary and transient heat conduction in a non homogeneous material“. Wärme- und Stoffübertragung 20, Nr. 4 (Dezember 1986): 269–72. http://dx.doi.org/10.1007/bf01002417.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chernukha, O. Yu, und P. R. Pelekh. „Stationary heat conduction processes in bodies of randomly inhomogeneous structure“. Journal of Mathematical Sciences 190, Nr. 6 (13.04.2013): 848–58. http://dx.doi.org/10.1007/s10958-013-1293-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bufler, H. „Stationary heat conduction in a macro- and microperiodically layered solid“. Archive of Applied Mechanics (Ingenieur Archiv) 70, Nr. 1-3 (22.02.2000): 103–14. http://dx.doi.org/10.1007/s004199900045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Stationary heat conduction"

1

Brachna, Róbert. „Stanovení anizotropie tepelné vodivosti polymerních chladičů pro chlazení elektroniky“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445460.

Der volle Inhalt der Quelle
Annotation:
The master's thesis focuses on creating a numerical model of a polymeric heat sink with emphasis on its significant thermal conductivity anisotropy. This anisotropy is caused by highly thermally conductive graphite filler. Its final orientation is given by the melt flow inside the mould cavity during injection molding. The numerical model is created on the basis of a heat sink prototype subjected to experimental measurements, whose physical conditions are reliably replicated by the model. The determination of anisotropy is divided into two parts. The qualitative part is based on the fracture analysis of the heat sink prototype and determines the principal directions of the conductivity tensor in individual sections of the geometry. The computation of principal conductivities falls into the quantitative part, in which this task is formulated as an inverse heat conduction problem. The input data for the proposed task are experimentally obtained temperatures at different places of the geometry. The values of principal conductivities are optimized to minimize the difference between the measured and simulated temperatures.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zajíček, Václav. „Vytápění bytového domu“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2019. http://www.nusl.cz/ntk/nusl-392215.

Der volle Inhalt der Quelle
Annotation:
The thesis is composed of three parts - theoretical, computational and a project part. The theoretical part deals with heat sharing through conduction, flow and radiation. The computational part is focused on the overall calculation of the heating system to operate smoothly and reliably. Three gas condensing boilers are designed as a source of heat. The heating of the water is solved as a reservoir. It's source of heat is one gas condensation boiler. The project part contains a technical report and the project documentation on the stage of the implementation dossier.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Stationary heat conduction"

1

Mlýnek, Jaroslav, und Roman Knobloch. „The Model of Non-stationary Heat Conduction in a Metal Mould“. In Advances in Intelligent Systems and Computing, 364–71. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65960-2_45.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mucha, Piotr B., Milan Pokorný und Ewelina Zatorska. „Existence of Stationary Weak Solutions for the Heat Conducting Flows“. In Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 1–68. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-10151-4_64-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mucha, PiotrBogusł aw, Milan Pokorný und Ewelina Zatorska. „Existence of Stationary Weak Solutions for Compressible Heat Conducting Flows“. In Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2595–662. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-13344-7_64.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Rutin, Sergey B., Aleksandr D. Yampol'skiy und Pavel V. Skripov. „Heat Transfer in Supercritical Fluids“. In Advanced Applications of Supercritical Fluids in Energy Systems, 271–91. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2047-4.ch009.

Der volle Inhalt der Quelle
Annotation:
Results of experimental study of non-stationary heat transfer in supercritical fluids, which were obtained using the method of controlled pulse heating of low-inertia wire probe, are discussed. The aim of this study was to clarify the peculiarities of heat conduction mode at significant heat loads. A threshold decrease in the “instant” heat transfer coefficient, the more pronounced the closer the pressure value to critical pressure, has been found, as well as the absence of impact of the isobaric heat capacity peak known from stationary measurements on the experimental results. These results give new insights into selection of the operating pressure of supercritical heat transfer agent. Small time and spatial scale in the experiments (units of millisecond and units of micrometer) in combination with high-power heat release (up to 20 MW/m2) makes it possible to associate the results with the behavior of boundary layer region of heat transfer agent.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Skripov, Pavel V., Aleksandr D. Yampol'skiy und Sergey B. Rutin. „High-Power Heat Transfer in Supercritical Fluids“. In Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems, 424–50. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5796-9.ch012.

Der volle Inhalt der Quelle
Annotation:
Non-stationary heat transfer in supercritical fluids at relatively small temporal and spatial scales was studied experimentally. The aim of the study was to clarify the peculiarities of conductive heat transfer mode at significant heat loads. An unexpected stepwise decrease in the instant heat transfer coefficient has been revealed in the course of crossing the vicinity of the critical temperature along the supercritical isobar. This means that the peaks of isobaric heat capacity and excess thermal conductivity, which are known from stationary measurements, do not affect the experimental results. It is assumed that the action of considerable gradient in temperature and the presence of heat-transfer surface in pulse heated system can serve as factors that suppress large-scale fluctuations, leading to a “smoothing” the critical enhancement of the thermophysical properties. As an important consequence, this study gives new insight into selection of the operating pressure of supercritical heat transfer agent.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Stationary heat conduction"

1

BARBERA, ELVIRA. „STATIONARY HEAT CONDUCTION IN A ROTATING FRAME“. In Proceedings of the 11th Conference on WASCOM 2001. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777331_0006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zhou, Le-Ping, Bu-Xuan Wang, Xiao-Ze Du und Yong-Ping Yang. „Analysis of Heat Conduction in Dilute Nanofluids“. In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18429.

Der volle Inhalt der Quelle
Annotation:
In this paper, we assume that a nanofluid is a mixture consisting of a continuous base fluid component and a discontinuous nanoparticle component. Then, based on the analysis of Buongiorno in 2006 for critical slip mechanisms in nanofluids, we consider the effects of Brownian diffusion and thermophoresis of nanoparticles on heat and mass flux in nanofluid. With the coupled conservation equations, we analyze the heat conduction properties of general nanofluids under three conditions: 1) stationary fluid with uniform temperature, 2) stationary fluid under constant temperature boundary, and 3) stationary fluid under constant heat flux boundary. The results show that nanofluid effective thermal conductivity depends on the thermal conductivity of nanoparticle and basic fluid, particle concentration, particle size, particle distribution, Brownian and thermal diffusion, boundary condition and time. It indicates that the nanofluid effective thermal conductivity can be well predicted for stationary fluid with uniform temperature from classical effective medium theory such as Maxwell’s approach. However, the measurements applying steady or unsteady heat conduction methods for pure materials fail to predict correctively the effective thermal conductivity of nanofluid and are influenced by boundary conditions. Preliminary conclusions include approximate correlations of effective thermal conductivity of dilute nanofluids using steady state and quasi-steady state measuring methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Reinhardt, Hans-Jürgen, und Dinh Nho Hao. „Efficient Numerical Solution of Inverse Heat Conduction Problems“. In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0659.

Der volle Inhalt der Quelle
Annotation:
Abstract In this contribution we propose new numerical methods for solving inverse heat conduction problems. The methods are constructed by considering the desired heat flux at the boundary as piecewise constant (in time) and then deriving an explicit expression for the solution of the equation for a stationary point of the minimizing functional. In a very special case the well-known Beck method is obtained. For the time being, numerical tests could not be included in this contribution but will be presented in a forthcoming paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Shokouhmand, Hossein, Seyed Reza Mahmoudi und Kaveh Habibi. „Analytical Solution of Hyperbolic Heat Conduction Equation for a Finite Slab With Arbitrary Boundaries, Initial Condition, and Stationary Heat Source“. In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62058.

Der volle Inhalt der Quelle
Annotation:
This paper presents an analytical solution of the hyperbolic heat conduction equation for a finite slab that sides are subjected to arbitrary heat source, boundary, and initial conditions. In the mathematical model used in this study, the heating on both sides treated as an apparent heat source while sides of the slab assumed to be insulated. Distribution of the apparent heat source for a problem with arbitrary heating on two boundaries is solved. The solution obtained by separation of variable method using appropriate Fourier series. Being a Sturm-Liouville problem in x-direction, suitable orthogonal functions can be allocated to hyperbolic heat conduction equation depending on the type of boundary conditions. Despite ease of proposed method, very few works has been done to solve hyperbolic heat conduction problems using this method by authors. The main feature of the method is straightforward formulation. In the analysis of heat conduction involving extremely short times, the parabolic heat conduction equation breaks down. By increasing the applications of the fast heat sources such as laser pulse for annealing of semiconductors and high heat flux applications, the need for adequate model of heat conduction has arisen. The hyperbolic heat conduction equation eliminates the paradox of an infinite speed of propagation of thermal disturbances which contradicts with Einstein’s theory of relativity. Moreover, it describes the highly transient temperature distribution in a finite medium more accurately.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gubareva, Kristina, Andrey Popov, Natalia Krasnova, Konstantin Trubitsyn und Vasiliy Tkachev. „On a Method for Solving Non-Stationary Heat Conduction Problems with Constant over Time Internal Heat Sources“. In 2019 XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP). IEEE, 2019. http://dx.doi.org/10.1109/cscmp45713.2019.8976719.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Maruyama, Shigeo. „Topics of Heat Transfer Related to Single-Walled Carbon Nanotubes“. In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32048.

Der volle Inhalt der Quelle
Annotation:
Using an alcohol catalytic CVD method shown to produce high-quality single-walled carbon nanotubes (SWNTs), films of vertically aligned (VA-)SWNTs were synthesized on quartz substrates. The VA-SWNTs can be removed from the substrate and transferred onto an arbitrary surface—without disturbing the vertical alignment—using a hot-water assisted technique. This ability makes experimental measurements of the anisotropic properties of SWNTs considerably less challenging. A series of molecular dynamics simulations have been performed to investigate a variety of heat conduction characteristics of SWNTs. Investigations of stationary heat conduction identifies diffusive-ballistic heat conduction regime in a wide range of nanotube-lengths. Furthermore, studies on non-stationary heat conduction show that the extensive ballistic phonon transport gives rise to wave-like non-Fourier heat conduction. Finally, several case studies are presented for SWNT heat transfer in more practical situations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

BARBERA, ELVIRA. „AN APPLICATION OF EXTENDED THERMODYNAMICS AND FLUCTUATION PRINCIPLE TO STATIONARY HEAT CONDUCTION IN RADIAL SYMMETRY“. In Proceedings of the 14th Conference on WASCOM 2007. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812772350_0006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

ZHAO, NANRONG, und MASARU SUGIYAMA. „ONE-DIMENSIONAL STATIONARY HEAT CONDUCTION IN A RAREFIED GAS AT REST ANALYZED BY CONSISTENT-ORDER EXTENDED THERMODYNAMICS“. In Proceedings of the 13th Conference on WASCOM 2005. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773616_0073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Diligenskaya, A. N. „Method of Parametric Optimization in Problems of Identification of Boundary Conditions of Convective Heat Transfer in Processes of Non-Stationary Heat Conduction“. In 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE, 2018. http://dx.doi.org/10.1109/fareastcon.2018.8602677.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ranut, Paola, Cristiano Persi, Enrico Nobile und Stefano Spagnul. „Estimation of Heat Flux Distribution in a Continuous Casting Mould by Inverse Heat Transfer Algorithms“. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47435.

Der volle Inhalt der Quelle
Annotation:
In the continuous casting process of steel, the control of the mould heat removal is a key parameter, since it directly affects the shell growth and the stresses and strains that are produced in the mould. An inverse heat conduction model was developed to calculate mould heat transfer from temperature measurements, recorded using thermocouples buried inside the copper mould wall. The mould is water-cooled to solidify the hot metal directly in contact with it. The direct stationary conduction problem was solved both on a 2D and a 3D domain; the 2D geometry concerns only a longitudinal section of the mould, while in the 3D domain a whole face is considered. The inverse problem was solved using a Conjugate Gradient algorithm, a Genetic Algorithm and the Nelder-Mear SIMPLEX algorithm. For the 3D geometry, the heat flux profile calculated at the axis of the face is close to that obtained from the 2D model, although the former is slightly lower. For both geometries, there is a good agreement between numerical and experimental temperatures. Moreover, the 3D model provides a better estimate of the outlet water temperature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie