Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „State Token Mechanism“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "State Token Mechanism" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "State Token Mechanism"
Hu, Anwen, Zhicheng Dou, Jian-Yun Nie und Ji-Rong Wen. „Leveraging Multi-Token Entities in Document-Level Named Entity Recognition“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 05 (03.04.2020): 7961–68. http://dx.doi.org/10.1609/aaai.v34i05.6304.
Der volle Inhalt der QuelleYang, Yixiao, Xiang Chen und Jiaguang Sun. „Improve Language Modeling for Code Completion Through Learning General Token Repetition of Source Code with Optimized Memory“. International Journal of Software Engineering and Knowledge Engineering 29, Nr. 11n12 (November 2019): 1801–18. http://dx.doi.org/10.1142/s0218194019400229.
Der volle Inhalt der QuelleKim, Jinsu, Eunsun Choi, Byung-Gyu Kim und Namje Park. „Proposal of a Token-Based Node Selection Mechanism for Node Distribution of Mobility IoT Blockchain Nodes“. Sensors 23, Nr. 19 (05.10.2023): 8259. http://dx.doi.org/10.3390/s23198259.
Der volle Inhalt der QuelleBai, He, Peng Shi, Jimmy Lin, Yuqing Xie, Luchen Tan, Kun Xiong, Wen Gao und Ming Li. „Segatron: Segment-Aware Transformer for Language Modeling and Understanding“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 14 (18.05.2021): 12526–34. http://dx.doi.org/10.1609/aaai.v35i14.17485.
Der volle Inhalt der QuelleSitnik, A. A. „NFT as an Object of Legal Regulation“. Actual Problems of Russian Law 17, Nr. 12 (19.11.2022): 84–93. http://dx.doi.org/10.17803/1994-1471.2022.145.12.084-093.
Der volle Inhalt der QuelleHuang, Lingbo, Yushi Chen und Xin He. „Spectral-Spatial Mamba for Hyperspectral Image Classification“. Remote Sensing 16, Nr. 13 (03.07.2024): 2449. http://dx.doi.org/10.3390/rs16132449.
Der volle Inhalt der QuelleLiu, Huey-Ing, und Wei-Lin Chen. „X-Transformer: A Machine Translation Model Enhanced by the Self-Attention Mechanism“. Applied Sciences 12, Nr. 9 (29.04.2022): 4502. http://dx.doi.org/10.3390/app12094502.
Der volle Inhalt der QuelleGuo, Chaopeng, Pengyi Zhang, Bangyao Lin und Jie Song. „A Dual Incentive Value-Based Paradigm for Improving the Business Market Profitability in Blockchain Token Economy“. Mathematics 10, Nr. 3 (29.01.2022): 439. http://dx.doi.org/10.3390/math10030439.
Der volle Inhalt der QuelleKhoo, Ling Min Serena, Hai Leong Chieu, Zhong Qian und Jing Jiang. „Interpretable Rumor Detection in Microblogs by Attending to User Interactions“. Proceedings of the AAAI Conference on Artificial Intelligence 34, Nr. 05 (03.04.2020): 8783–90. http://dx.doi.org/10.1609/aaai.v34i05.6405.
Der volle Inhalt der QuelleKeerthana, R. L., Awadhesh Kumar Singh, Poonam Saini und Diksha Malhotra. „Explaining Sarcasm of Tweets using Attention Mechanism“. Scalable Computing: Practice and Experience 24, Nr. 4 (17.11.2023): 787–96. http://dx.doi.org/10.12694/scpe.v24i4.2166.
Der volle Inhalt der QuelleDissertationen zum Thema "State Token Mechanism"
Kady, Charbel. „Managing Business Process Continuity and Integrity Using Pattern-Based Corrections“. Electronic Thesis or Diss., IMT Mines Alès, 2024. http://www.theses.fr/2024EMAL0014.
Der volle Inhalt der QuelleThis thesis presents an approach to managing deviations in Business Process Model and Notation (BPMN) workflows. The research addresses the critical need for effective deviation management by integrating a comprehensive framework that includes pattern-based deviation correction and an enriched State Token mechanism. The approach is tested through a case study in the apiculture domain, demonstrating the practical applicability and effectiveness of the proposed method. Key contributions include the development of a library of patterns, the characterization of BPMN elements, and a mechanism to help decision-making in addressing deviations. The results show that the approach can efficiently correct deviations, ensuring workflow continuity and integrity
Buchteile zum Thema "State Token Mechanism"
Ante, Lennart. „Blockchain-Based Tokens as Financing Instruments“. In Fostering Innovation and Competitiveness With FinTech, RegTech, and SupTech, 129–41. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4390-0.ch007.
Der volle Inhalt der QuelleLipton, Alexander. „Toward a Stable Tokenized Medium of Exchange“. In Cryptoassets, 89–116. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190077310.003.0005.
Der volle Inhalt der QuelleWłosik, Katarzyna. „Initial coin offering jako nowa forma finansowania i inwestycji“. In Innowacje finansowe w gospodarce 4.0, 70–87. Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu, 2021. http://dx.doi.org/10.18559/978-83-8211-083-8/4.
Der volle Inhalt der QuelleSai Swaroop, Akella, und S. Rama Sree. „Network Mechanism Establishment and Authentication Using Digital Certificate Management“. In Advances in Transdisciplinary Engineering. IOS Press, 2023. http://dx.doi.org/10.3233/atde221270.
Der volle Inhalt der QuelleLi, Wenda, Kaixuan Chen, Shunyu Liu, Tongya Zheng, Wenjie Huang und Mingli Song. „Learning a Mini-Batch Graph Transformer via Two-Stage Interaction Augmentation“. In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240842.
Der volle Inhalt der Quelle„Introduction to Financial Digital Assets“. In Financial Digital Assets and the Financial Risk Modeling of Portfolio Investments, 1–50. IGI Global, 2025. https://doi.org/10.4018/979-8-3693-8120-5.ch001.
Der volle Inhalt der QuelleWu, Junjie, Mingjie Sun, Chen Gong, Nan Yu und Guohong Fu. „PromptCD: Coupled and Decoupled Prompt Learning for Vision-Language Models“. In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240504.
Der volle Inhalt der QuelleFagan, Melinda Bonnie. „Stem cells“. In Routledge Encyclopedia of Philosophy. London: Routledge, 2023. http://dx.doi.org/10.4324/9780415249126-q152-1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "State Token Mechanism"
Zhou, Yan, Longtao Huang, Tao Guo, Jizhong Han und Songlin Hu. „A Span-based Joint Model for Opinion Target Extraction and Target Sentiment Classification“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/762.
Der volle Inhalt der QuelleYin, Shi, Shijie Huang, Shangfei Wang, Jinshui Hu, Tao Guo, Bing Yin, Baocai Yin und Cong Liu. „1DFormer: A Transformer Architecture Learning 1D Landmark Representations for Facial Landmark Tracking“. In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/176.
Der volle Inhalt der QuelleLiu, Jie, Shaowei Chen, Bingquan Wang, Jiaxin Zhang, Na Li und Tong Xu. „Attention as Relation: Learning Supervised Multi-head Self-Attention for Relation Extraction“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/524.
Der volle Inhalt der QuelleTheil, Christoph Kilian, Samuel Broscheit und Heiner Stuckenschmidt. „PRoFET: Predicting the Risk of Firms from Event Transcripts“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/724.
Der volle Inhalt der QuelleZhou, Chengjie, Chao Che, Pengfei Wang und Qiang Zhang. „SCAT: A Time Series Forecasting with Spectral Central Alternating Transformers“. In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/622.
Der volle Inhalt der QuelleShen, Tao, Tianyi Zhou, Guodong Long, Jing Jiang, Sen Wang und Chengqi Zhang. „Reinforced Self-Attention Network: a Hybrid of Hard and Soft Attention for Sequence Modeling“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/604.
Der volle Inhalt der QuelleZhang, Wenchang, Hua Wang und Fan Zhang. „Skip-Timeformer: Skip-Time Interaction Transformer for Long Sequence Time-Series Forecasting“. In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/608.
Der volle Inhalt der QuelleKahatapitiya, Kumara, und Michael S. Ryoo. „SWAT: Spatial Structure Within and Among Tokens“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/106.
Der volle Inhalt der QuelleLiu, Zicheng, Li Wang, Siyuan Li, Zedong Wang, Haitao Lin und Stan Z. Li. „LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory“. In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/510.
Der volle Inhalt der QuelleYan, Fan, und Ming Li. „Towards Generating Summaries for Lexically Confusing Code through Code Erosion“. In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/512.
Der volle Inhalt der Quelle