Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Stability of hybrid systems“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Stability of hybrid systems" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Stability of hybrid systems"
LI, ZHENGGUO, CHEONG BOON SOH und XINHE XU. „Stability of hybrid dynamic systems“. International Journal of Systems Science 28, Nr. 8 (Juli 1997): 837–46. http://dx.doi.org/10.1080/00207729708929444.
Der volle Inhalt der QuelleMartynyuk, A. A. „Practical stability of hybrid systems“. Soviet Applied Mechanics 25, Nr. 2 (Februar 1989): 194–200. http://dx.doi.org/10.1007/bf00888136.
Der volle Inhalt der QuelleBychkov, A. S., und M. G. Merkur’ev. „Stability of continuous hybrid systems“. Cybernetics and Systems Analysis 43, Nr. 2 (März 2007): 261–65. http://dx.doi.org/10.1007/s10559-007-0045-7.
Der volle Inhalt der QuelleLirong Huang, Xuerong Mao und Feiqi Deng. „Stability of Hybrid Stochastic Retarded Systems“. IEEE Transactions on Circuits and Systems I: Regular Papers 55, Nr. 11 (Dezember 2008): 3413–20. http://dx.doi.org/10.1109/tcsi.2008.2001825.
Der volle Inhalt der QuelleBiemond, J. J. Benjamin, Romain Postoyan, W. P. Maurice H. Heemels und Nathan van de Wouw. „Incremental Stability of Hybrid Dynamical Systems“. IEEE Transactions on Automatic Control 63, Nr. 12 (Dezember 2018): 4094–109. http://dx.doi.org/10.1109/tac.2018.2830506.
Der volle Inhalt der QuelleMinh, Vu Trieu. „Stability for switched dynamic hybrid systems“. Mathematical and Computer Modelling 57, Nr. 1-2 (Januar 2013): 78–83. http://dx.doi.org/10.1016/j.mcm.2011.05.055.
Der volle Inhalt der QuelleMaria, G. A., C. Tang und J. Kim. „Hybrid transient stability analysis (power systems)“. IEEE Transactions on Power Systems 5, Nr. 2 (Mai 1990): 384–93. http://dx.doi.org/10.1109/59.54544.
Der volle Inhalt der QuelleHui Ye, A. N. Michel und Ling Hou. „Stability theory for hybrid dynamical systems“. IEEE Transactions on Automatic Control 43, Nr. 4 (April 1998): 461–74. http://dx.doi.org/10.1109/9.664149.
Der volle Inhalt der QuelleSisodiya, Priyanka, und Dr Anil Kumar Kori. „Review on Power Quality of Hybrid Renewable Energy System“. International Journal for Research in Applied Science and Engineering Technology 10, Nr. 7 (31.07.2022): 1439–43. http://dx.doi.org/10.22214/ijraset.2022.44874.
Der volle Inhalt der QuelleYang, Ying, und Guopei Chen. „Finite Time Stability of Stochastic Hybrid Systems“. Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/867189.
Der volle Inhalt der QuelleDissertationen zum Thema "Stability of hybrid systems"
Karalis, Paschalis. „Stability and stabilisation of switching and hybrid dissipative systems“. Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/stability-and-stabilisation-of-switching-and-hybrid-dissipative-systems(3e6ee880-e59a-49ed-a2f2-1612df85557f).html.
Der volle Inhalt der QuelleDella, rossa Matteo. „Non smooth Lyapunov functions for stability analysis of hybrid systems“. Thesis, Toulouse, INSA, 2020. http://www.theses.fr/2020ISAT0004.
Der volle Inhalt der QuelleModeling of many phenomena in nature escape the rather common frameworks of continuous-time and discrete-time models. In fact, for many systems encountered in practice, these two paradigms need to be intrinsically related and connected, in order to reach a satisfactory level of description in modeling the considered physical/engineering process.These systems are often referred to as hybrid systems, and various possible formalisms have appeared in the literature over the past years.The aim of this thesis is to analyze the stability of particular classes of hybrid systems, by providing Lyapunov-based sufficient conditions for (asymptotic) stability. In particular, we will focus on non-differentiable locally Lipschitz candidate Lyapunov functions. The first chapters of this manuscript can be considered as a general introduction of this topic and the related concepts from non-smooth analysis.This will allow us to study a class of piecewise smooth maps as candidate Lyapunov functions, with particular attention to the continuity properties of the constrained differential inclusion comprising the studied hybrid systems. We propose ``relaxed'' Lyapunov conditions which require to be checked only on a dense set and discuss connections to other classes of locally Lipschitz or piecewise regular functions.Relaxing the continuity assumptions, we then investigate the notion of generalized derivatives when considering functions obtained as emph{max-min} combinations of smooth functions. This structure turns out to be particularly fruitful when considering the stability problem for differential inclusions arising from regularization of emph{state-dependent switched systems}.When the studied switched systems are composed of emph{linear} sub-dynamics, we refine our results, in order to propose algorithmically verifiable conditions.We further explore the utility of set-valued derivatives in establishing input-to-state stability results, in the context of perturbed differential inclusions/switched systems, using locally Lipschitz candidate Lyapunov functions. These developments are then used in analyzing the stability problem for interconnections of differential inclusion, with an application in designing an observer-based controller for state-dependent switched systems
Alwan, Mohamad. „Stability of Hybrid Singularly Perturbed Systems with Time Delay“. Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2934.
Der volle Inhalt der QuelleEzzine, Jelel. „On stabilization and control of hybrid systems“. Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/15626.
Der volle Inhalt der QuelleNersesov, Sergey G. „Nonlinear Impulsive and Hybrid Dynamical Systems“. Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7147.
Der volle Inhalt der QuelleAdimoolam, Santosh Arvind. „A Calculus of Complex Zonotopes for Invariance and Stability Verification of Hybrid Systems“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM027/document.
Der volle Inhalt der QuelleComputing reachable sets is a de facto approach used in many formal verification methods for hybrid systems. But exact computation of the reachable set is an in- tractable problem for many kinds of hybrid systems, either due to undecidability or high computational complexity. Alternatively, quite a lot of research has been focused on using set representations that can be efficiently manipulated to com- pute sufficiently accurate over-approximation of the reachable set. Zonotopes are a useful set representation in reachability analysis because of their closure and low complexity for computing linear transformation and Minkowski sum operations. But for approximating the unbounded time reachable sets by positive invariants, zonotopes have the following drawback. The effectiveness of a set representation for computing a positive invariant depends on efficiently encoding the directions for convergence of the states to an equilibrium. In an affine hybrid system, some of the directions for convergence can be encoded by the complex valued eigen- vectors of the transformation matrices. But the zonotope representation can not exploit the complex eigenstructure of the transformation matrices because it only has real valued generators.Therefore, we extend real zonotopes to the complex valued domain in a way that can capture contraction along complex valued vectors. This yields a new set representation called complex zonotope. Geometrically, complex zonotopes repre- sent a wider class of sets that include some non-polytopic sets as well as polytopic zonotopes. They retain the merit of real zonotopes that we can efficiently perform linear transformation and Minkowski sum operations and compute the support function. Additionally, we show that they can capture contraction along complex valued eigenvectors. Furthermore, we develop computationally tractable approx- imations for inclusion-checking and intersection with half-spaces. Using these set operations on complex zonotopes, we develop convex programs to verify lin- ear invariance properties of discrete time affine hybrid systems and exponential stability of linear impulsive systems. Our experiments on some benchmark exam- ples demonstrate the efficiency of the verification techniques based on complex zonotopes
Xu, Honglei. „Stability and control of switched systems with impulsive effects“. Thesis, Curtin University, 2009. http://hdl.handle.net/20.500.11937/415.
Der volle Inhalt der QuelleSeyfried, Aaron W. „Stability of a Fuzzy Logic Based Piecewise Linear Hybrid System“. Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1370017300.
Der volle Inhalt der QuelleHui, Qing. „Nonlinear dynamical systems and control for large-scale, hybrid, and network systems“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24635.
Der volle Inhalt der QuelleCommittee Chair: Haddad, Wassim; Committee Member: Feron, Eric; Committee Member: JVR, Prasad; Committee Member: Taylor, David; Committee Member: Tsiotras, Panagiotis
Oehlerking, Jens [Verfasser], und Oliver [Akademischer Betreuer] Theel. „Decomposition of stability proofs for hybrid systems / Jens Oehlerking. Betreuer: Oliver Theel“. Oldenburg : IBIT - Universitätsbibliothek, 2012. http://d-nb.info/1025114434/34.
Der volle Inhalt der QuelleBücher zum Thema "Stability of hybrid systems"
Goebel, Rafal. Hybrid dynamical systems: Modeling, stability, and robustness. Princeton, N.J: Princeton University Press, 2012.
Den vollen Inhalt der Quelle findenSchuring, J. Frequency response analysis of hybrid systems. Amsterdam: National Aerospace Laboratory, 1987.
Den vollen Inhalt der Quelle findenGrossman, Robert L., Anil Nerode, Anders P. Ravn und Hans Rischel, Hrsg. Hybrid Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-57318-6.
Der volle Inhalt der Quelle1957-, Grossman Robert, Hrsg. Hybrid systems. Berlin: Springer-Verlag, 1993.
Den vollen Inhalt der Quelle findenA, Pnueli, und Sifakis J, Hrsg. Hybrid systems. Amsterdam: Elsevier, 1995.
Den vollen Inhalt der Quelle findenHolcombe, W. M. L. Hybrid machines for hybrid systems. Sheffield: University of Sheffield, Department of Computer Science, 1995.
Den vollen Inhalt der Quelle findenMacDonald, Paul N. Two-Hybrid Systems. New Jersey: Humana Press, 2001. http://dx.doi.org/10.1385/1592592104.
Der volle Inhalt der QuelleAbraham, Ajith, Thomas Hanne, Oscar Castillo, Niketa Gandhi, Tatiane Nogueira Rios und Tzung-Pei Hong, Hrsg. Hybrid Intelligent Systems. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73050-5.
Der volle Inhalt der QuelleLin, Hai, und Panos J. Antsaklis. Hybrid Dynamical Systems. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-78731-8.
Der volle Inhalt der QuelleHirayama, Yoshiro, Koji Ishibashi und Kae Nemoto, Hrsg. Hybrid Quantum Systems. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6679-7.
Der volle Inhalt der QuelleBuchteile zum Thema "Stability of hybrid systems"
Kourjanski, Mikhail, und Pravin Varaiya. „Stability of hybrid systems“. In Hybrid Systems III, 413–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0020964.
Der volle Inhalt der QuelleTrenn, Stephan. „Stability of Switched DAEs“. In Hybrid Systems with Constraints, 57–83. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118639856.ch3.
Der volle Inhalt der QuellePark, Hong Seong, Young Sin Kim, Wook Hyun Kwon und Sang Jeong Lee. „Model and stability of hybrid linear system“. In Hybrid Systems III, 424–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0020965.
Der volle Inhalt der QuelleDoğruel, Murat, und ümit özgüner. „Modeling and stability issues in hybrid systems“. In Hybrid Systems II, 148–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/3-540-60472-3_8.
Der volle Inhalt der QuelleJi, Wang, und He Weidong. „Formal specification of stability in hybrid control systems“. In Hybrid Systems III, 294–303. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0020954.
Der volle Inhalt der QuelleYin, G., und Q. Zhang. „Stability of Nonlinear Hybrid Systems“. In New Trends in Nonlinear Dynamics and Control and their Applications, 251–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-45056-6_16.
Der volle Inhalt der QuelleFiacchini, Mirko, Sophie Tarbouriech und Christophe Prieur. „Exponential Stability for Hybrid Systems with Saturations“. In Hybrid Systems with Constraints, 179–212. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118639856.ch7.
Der volle Inhalt der QuelleBokes, Pavol, und Abhyudai Singh. „Controlling Noisy Expression Through Auto Regulation of Burst Frequency and Protein Stability“. In Hybrid Systems Biology, 80–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28042-0_6.
Der volle Inhalt der QuelleAmes, Aaron D., Paulo Tabuada und Shankar Sastry. „On the Stability of Zeno Equilibria“. In Hybrid Systems: Computation and Control, 34–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11730637_6.
Der volle Inhalt der QuelleTeel, Andrew R. „Stability Theory for Hybrid Dynamical Systems“. In Encyclopedia of Systems and Control, 1301–7. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-5058-9_99.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Stability of hybrid systems"
Zheng, Huannan, Wei Zhu und Ya Deng. „Stability of Nonlinear Systems via Hybrid Delayed Impulses“. In 2024 43rd Chinese Control Conference (CCC), 329–34. IEEE, 2024. http://dx.doi.org/10.23919/ccc63176.2024.10662032.
Der volle Inhalt der QuelleLiu, Bin, und David J. Hill. „Stability for hybrid event systems“. In 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426599.
Der volle Inhalt der QuelleMohrenschildt, M. V. „Hybrid systems: solutions, stability, control“. In Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.878990.
Der volle Inhalt der QuelleHassan, Omran,. „Local Stability of Bilinear Systems with Asynchronous Sampling“. In Analysis and Design of Hybrid Systems, herausgegeben von Heemels, Maurice, chair Giua, Alessandro und Heemels, Maurice. IFAC, Elsevier, 2012. http://dx.doi.org/10.3182/20120606-3-nl-3011.00004.
Der volle Inhalt der QuelleChristian, Stoecker,. „Stability Analysis of Interconnected Event-Based Control Loops“. In Analysis and Design of Hybrid Systems, herausgegeben von Heemels, Maurice, chair Giua, Alessandro und Heemels, Maurice. IFAC, Elsevier, 2012. http://dx.doi.org/10.3182/20120606-3-nl-3011.00010.
Der volle Inhalt der QuelleDashkovskiy, Sergey, und Ratthaprom Promkam. „Alternative stability conditions for hybrid systems“. In 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6760392.
Der volle Inhalt der QuelleZhu, Liying, und Yuzhen Wang. „Stability of Hybrid Dissipative Hamiltonian Systems“. In 2006 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.280550.
Der volle Inhalt der QuelleLoon,, van. „Stability Analysis of Networked Control Systems with Periodic Protocols and Uniform Quantizers“. In Analysis and Design of Hybrid Systems, herausgegeben von Heemels, Maurice, chair Giua, Alessandro und Heemels, Maurice. IFAC, Elsevier, 2012. http://dx.doi.org/10.3182/20120606-3-nl-3011.00030.
Der volle Inhalt der QuelleYong-Yan Fan, Jin-Hua Wang, Jing Zhang und Chong Wang. „Relative stability analysis of two hybrid systems“. In 2012 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2012. http://dx.doi.org/10.1109/icmlc.2012.6359472.
Der volle Inhalt der QuelleDashkovskiy, Sergey, und Michael Kosmykov. „Stability of networks of hybrid ISS systems“. In 2009 Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference (CCC). IEEE, 2009. http://dx.doi.org/10.1109/cdc.2009.5400628.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Stability of hybrid systems"
Gao, Sicum, Soonho Kong und Edmund M. Clarke. Revisiting the Complexity of Stability of Continuous and Hybrid Systems. Fort Belvoir, VA: Defense Technical Information Center, Juli 2014. http://dx.doi.org/10.21236/ada611548.
Der volle Inhalt der QuelleTeel, Andrew R., und Joao P. Hespanha. A Robust Stability and Control Theory for Hybrid Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada470821.
Der volle Inhalt der QuelleGreenwood, Michael Scott, Sacit M. Cetiner und David W. Fugate. Nuclear Hybrid Energy System Model Stability Testing. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1354665.
Der volle Inhalt der QuelleHassan, Saeed, AbdulKhaliq Alshadid, Ravinder Saini und Lujain Aldosari. Assessment of Mechanical Properties of Hybrid PVES Elastomeric Material in Comparison to its Parent Materials - A Systemic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, März 2023. http://dx.doi.org/10.37766/inplasy2023.3.0043.
Der volle Inhalt der QuelleGoel, Dr Divanshu, und Dr Manjeet Singh. HYBRID EXTERNAL FIXATION FOR PROXIMAL TIBIAL FRACTURES. World Wide Journals, Februar 2023. http://dx.doi.org/10.36106/ijar/1505336.
Der volle Inhalt der QuelleKerber, Steve, Daniel Madrzykowski, James Dalton und Robert Backstrom. Improving Fire Safety by Understanding the Fire Performance of Engineered Floor Systems and Providing the Fire Service with Information for Tactical Decision Making. UL Firefighter Safety Research Institute, März 2012. http://dx.doi.org/10.54206/102376/zcoq6988.
Der volle Inhalt der QuelleHenzinger, Thomas A., und Shankar Sastry. Hybrid Systems: Computation and Control. Fort Belvoir, VA: Defense Technical Information Center, Februar 1999. http://dx.doi.org/10.21236/ada361329.
Der volle Inhalt der QuelleLafferriere, G., G. Pappas und S. Sastry. Hybrid Systems with Finite Bisimulations. Fort Belvoir, VA: Defense Technical Information Center, April 1998. http://dx.doi.org/10.21236/ada358308.
Der volle Inhalt der QuelleHeitmeyer, Constance. Requirements Specifications for Hybrid Systems. Fort Belvoir, VA: Defense Technical Information Center, Januar 1996. http://dx.doi.org/10.21236/ada463944.
Der volle Inhalt der QuelleDahleh, Munther A., und Alexandre Megretski. New Tools for Hybrid Systems. Fort Belvoir, VA: Defense Technical Information Center, Mai 2007. http://dx.doi.org/10.21236/ada467021.
Der volle Inhalt der Quelle