Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „SRAM non volatile“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "SRAM non volatile" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "SRAM non volatile"
Wang, Ming Qian, Jie Tao Diao, Nan Li, Xi Wang und Kai Bu. „A Study on Reconfiguring On-Chip Cache with Non-Volatile Memory“. Applied Mechanics and Materials 644-650 (September 2014): 3421–25. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.3421.
Der volle Inhalt der QuelleMispan, Mohd Syafiq, Aiman Zakwan Jidin, Muhammad Raihaan Kamarudin und Haslinah Mohd Nasir. „Lightweight hardware fingerprinting solution using inherent memory in off-the-shelf commodity devices“. Indonesian Journal of Electrical Engineering and Computer Science 25, Nr. 1 (01.01.2022): 105. http://dx.doi.org/10.11591/ijeecs.v25.i1.pp105-112.
Der volle Inhalt der QuelleAngizi, Shaahin, Navid Khoshavi, Andrew Marshall, Peter Dowben und Deliang Fan. „MeF-RAM: A New Non-Volatile Cache Memory Based on Magneto-Electric FET“. ACM Transactions on Design Automation of Electronic Systems 27, Nr. 2 (31.03.2022): 1–18. http://dx.doi.org/10.1145/3484222.
Der volle Inhalt der QuellePan, James N. „Atomic Force High Frequency Phonons Non-volatile Dynamic Random-Access Memory Compatible with Sub-7nm ULSI CMOS Technology“. MRS Advances 4, Nr. 48 (2019): 2577–84. http://dx.doi.org/10.1557/adv.2019.212.
Der volle Inhalt der QuelleVijay, H. M., und V. N. Ramakrishnan. „Radiation effects on memristor-based non-volatile SRAM cells“. Journal of Computational Electronics 17, Nr. 1 (08.11.2017): 279–87. http://dx.doi.org/10.1007/s10825-017-1080-x.
Der volle Inhalt der QuelleSingh, Damyanti, Neeta Pandey und Kirti Gupta. „Process invariant Schmitt Trigger non-volatile 13T1M SRAM cell“. Microelectronics Journal 135 (Mai 2023): 105773. http://dx.doi.org/10.1016/j.mejo.2023.105773.
Der volle Inhalt der QuelleJanniekode, Uma Maheshwar, Rajendra Prasad Somineni, Osamah Ibrahim Khalaf, Malakeh Muhyiddeen Itani, J. Chinna Babu und Ghaida Muttashar Abdulsahib. „A Symmetric Novel 8T3R Non-Volatile SRAM Cell for Embedded Applications“. Symmetry 14, Nr. 4 (07.04.2022): 768. http://dx.doi.org/10.3390/sym14040768.
Der volle Inhalt der QuellePriya, G. Lakshmi, Namita Rawat, Abhishek Sanagavarapu, M. Venkatesh und A. Andrew Roobert. „Hybrid Silicon Substrate FinFET-Metal Insulator Metal (MIM) Memristor Based Sense Amplifier Design for the Non-Volatile SRAM Cell“. Micromachines 14, Nr. 2 (17.01.2023): 232. http://dx.doi.org/10.3390/mi14020232.
Der volle Inhalt der QuelleKhan, Asif. „(Invited) Ferroelectric Field-Effect Transistors as High-Density, Ultra-fast, Embedded Non-Volatile Memories“. ECS Meeting Abstracts MA2022-02, Nr. 15 (09.10.2022): 805. http://dx.doi.org/10.1149/ma2022-0215805mtgabs.
Der volle Inhalt der QuelleP, Saleem Akram. „Non-Volatile 7T1R SRAM cell design for low voltage applications“. International Journal of Emerging Trends in Engineering Research 7, Nr. 11 (15.11.2019): 704–7. http://dx.doi.org/10.30534/ijeter/2019/487112019.
Der volle Inhalt der QuelleDissertationen zum Thema "SRAM non volatile"
Kotte, Aparna Reddy. „Memristor based SRAM“. OpenSIUC, 2020. https://opensiuc.lib.siu.edu/theses/2790.
Der volle Inhalt der QuelleDogan, Rabia. „System Level Exploration of RRAM for SRAM Replacement“. Thesis, Linköpings universitet, Elektroniksystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-92819.
Der volle Inhalt der QuelleBazzi, Hussein. „Resistive memory co-design in CMOS technologies“. Electronic Thesis or Diss., Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0567.
Der volle Inhalt der QuelleMany diversified applications (internet of things, embedded systems for automotive and medical applications, artificial intelligence) require an integrated circuit (SoC, System on Chip) with high-performance non-volatile memories to operate optimally. Although Flash memory is widely used today, this technology needs high voltage for programing operations and has reliability issues that are hard to handle beyond 18 nm technological node, increasing the cost of circuit design and fabrication. In this context, the semiconductor industry seeks an alternative non-volatile memory that can replace Flash memories. Among possible candidates (MRAM - Magnetic Random Access Memory, PCM - Phase Change Memory, FeRAM - Ferroelectric Random Access Memory), Resistive memories (RRAMs) offer superior performances on essential key points: compatibility with CMOS manufacturing processes, scalability, current consumption (standby and active), operational speed. Due to its relatively simple structure, RRAM technology can be easily integrated in any design flow opening the way for the development of new architectures that answer Von Neumann bottleneck. In this thesis, the main object is to show the integration abilities of RRAM devices with CMOS technology, using circuit design and electrical measurements, in order to develop different hybrid structures: non-volatile Static Random Access Memories (SRAM), True Random Number Generator (TRNG) and artificial neural networks
Yi-SungTsou und 鄒亦淞. „Design of a Saving-Write-Energy Non-Volatile SRAM“. Thesis, 2014. http://ndltd.ncl.edu.tw/handle/ym6ecc.
Der volle Inhalt der Quelle國立成功大學
電機工程學系
102
With the advancement of technology scaling, the leakage current issue becomes one of the most important challenges for SRAMs. Existing approaches usually use power gating or low supply voltage well-known data retention voltage to reduce the leakage energy consumption in standby mode. With the advent of nvSRAM, leakage current can be fully eliminated. Compared with conventional approaches, it can reach further energy saving by using powering off its supply voltage when data-backup is performed. However, not all of data are needed to back up. In this thesis, we propose a novel 10T2R RRAM-based nvSRAM with redundant bit-writes-aware controller which is considering redundant bit-writes condition. If data stored in SRAM cells are the same as that in RRAM devices, backup can be skipped. Otherwise, backup is performed. As a result, backup energy for the data can be saved under redundant bit-writes conditions. Simulation shows that energy saving can reach by up to 93% when high resistive state is larger than 10MΩ. And as long as the probability of the redundant bit-writes is larger than 25% probability, the backup energy saving is achieved. The technique can be applied to normally-off computing systems, energy harvesting systems, L2/L3 Cache, and so on.
Buchteile zum Thema "SRAM non volatile"
Lacaze, Pierre Camille, und Jean-Christophe Lacroix. „State of the Art of DRAM, SRAM, Flash, HDD and MRAM Electronic Memories“. In Non-Volatile Memories, 13–57. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118789988.ch2.
Der volle Inhalt der QuellePal, Soumitra, und N. S. Ranjan. „Design of Non-volatile SRAM Cell Using Memristor“. In Advances in Intelligent Systems and Computing, 175–83. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2757-1_19.
Der volle Inhalt der QuelleNikitha, L., N. S. Bhargavi und B. S. Kariyappa. „Design and Development of Non-volatile Multi-threshold Schmitt Trigger SRAM Cell“. In Lecture Notes in Electrical Engineering, 877–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5802-9_76.
Der volle Inhalt der QuelleKanika, Nitin Chaturvedi und S. Gurunarayanan. „Design and Analysis of a Hybrid Non-volatile SRAM Cell for Energy Autonomous IoT“. In Intelligent Computing Techniques for Smart Energy Systems, 57–65. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0214-9_8.
Der volle Inhalt der QuelleMonga, Kanika, und Nitin Chaturvedi. „A CMOS/MTJ Based Novel Non-volatile SRAM Cell with Asynchronous Write Termination for Normally OFF Applications“. In Communications in Computer and Information Science, 553–64. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9767-8_46.
Der volle Inhalt der QuelleRaman Sundara Raman, Siddhartha. „A Review on Non-Volatile and Volatile Emerging Memory Technologies“. In Computer Memory and Data Storage. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.110617.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "SRAM non volatile"
„Session 6 overview SRAM and non-volatile memories“. In 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. IEEE, 2002. http://dx.doi.org/10.1109/isscc.2002.992957.
Der volle Inhalt der QuelleYifu Gong, Na Gong, Ligang Hou und Jinhui Wang. „MTJ based data restoration in non-volatile SRAM“. In 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2016. http://dx.doi.org/10.1109/icsict.2016.7998635.
Der volle Inhalt der QuelleZhao, Weisheng, Eric Belhaire, Claude Chappert und Pascale Mazoyer. „Spintronic Device Based Non-volatile Low Standby Power SRAM“. In 2008 IEEE Computer Society Annual Symposium on VLSI. IEEE, 2008. http://dx.doi.org/10.1109/isvlsi.2008.11.
Der volle Inhalt der QuelleBajjuri, Vishnu, N. Umapathi, G. Valarmathy und SU Suganthi. „A Novel Non-Volatile SRAM with Reduced Read Delay“. In 2023 International Conference on Next Generation Electronics (NEleX). IEEE, 2023. http://dx.doi.org/10.1109/nelex59773.2023.10420862.
Der volle Inhalt der QuelleMizutani, T., K. Takeuchi, T. Saraya, H. Shinohara, M. Kobayashi und T. Hiramoto. „Parallel Programmable Non-volatile Memory Using Normal SRAM Cells“. In 2016 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2016. http://dx.doi.org/10.7567/ssdm.2016.a-7-04l.
Der volle Inhalt der QuelleMa, Yanjun. „Nonvolatile multibit SRAM, bit level caching, and multi-context computing for IoT“. In 2015 15th Non-Volatile Memory Technology Symposium (NVMTS). IEEE, 2015. http://dx.doi.org/10.1109/nvmts.2015.7457480.
Der volle Inhalt der QuelleWang, Lina, Jinhui Wang, Zezhong Yang, Ligang Hou und Na Gong. „A low power CMOS technology compatible non-volatile SRAM cell“. In 2014 IEEE 12th International Conference on Solid -State and Integrated Circuit Technology (ICSICT). IEEE, 2014. http://dx.doi.org/10.1109/icsict.2014.7021248.
Der volle Inhalt der QuelleKirubaraj, A. Alfred, und A. Affum Emmanuel. „Model design of non-volatile SRAM based on Magnetic Tunnel Junction“. In Technology (ICAST). IEEE, 2009. http://dx.doi.org/10.1109/icastech.2009.5409743.
Der volle Inhalt der QuelleMa, Yanjun. „Novel Multi-Bit Non-Volatile SRAM Cells for Runtime Reconfigurable Computing“. In 2015 IEEE International Memory Workshop (IMW). IEEE, 2015. http://dx.doi.org/10.1109/imw.2015.7150297.
Der volle Inhalt der QuelleGanesh, G. V., P. Saleem Akram, T. V. Ramana, K. Sai Chand, M. Rajesh Varma und A. Shiva Kumar. „Design of Non-Volatile 6T1R SRAM Cell For Low Power Applications“. In 2020 IEEE International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC). IEEE, 2020. http://dx.doi.org/10.1109/isssc50941.2020.9358855.
Der volle Inhalt der Quelle