Zeitschriftenartikel zum Thema „Squeezed light“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Squeezed light.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Squeezed light" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Slusher, Richart E., und Bernard Yurke. „Squeezed Light“. Scientific American 258, Nr. 5 (Mai 1988): 50–56. http://dx.doi.org/10.1038/scientificamerican0588-50.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Loudon, R., und P. L. Knight. „Squeezed Light“. Journal of Modern Optics 34, Nr. 6-7 (Juni 1987): 709–59. http://dx.doi.org/10.1080/09500348714550721.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yurke, B., und R. E. Slusher. „Squeezed light“. Optics News 13, Nr. 6 (01.06.1987): 6. http://dx.doi.org/10.1364/on.13.6.000006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yang, Wenhai, Wenting Diao, Chunxiao Cai, Tao Wu, Ke Wu, Yu Li, Cong Li et al. „A Bright Squeezed Light Source for Quantum Sensing“. Chemosensors 11, Nr. 1 (25.12.2022): 18. http://dx.doi.org/10.3390/chemosensors11010018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The use of optical sensing for in vivo applications is compelling, since it offers the advantages of non-invasiveness, non-ionizing radiation, and real-time monitoring. However, the signal-to-noise ratio (SNR) of the optical signal deteriorates dramatically as the biological tissue increases. Although increasing laser power can improve the SNR, intense lasers can severely disturb biological processes and viability. Quantum sensing with bright squeezed light can make the measurement sensitivity break through the quantum noise limit under weak laser conditions. A bright squeezed light source is demonstrated to avoid the deterioration of SNR and biological damage, which integrates an external cavity frequency-doubled laser, a semi-monolithic standing cavity with periodically poled titanyl phosphate (PPKTP), and a balanced homodyne detector (BHD) assembled on a dedicated breadboard. With the rational design of the mechanical elements, the optical layout, and the feedback control equipment, a maximum non-classical noise reduction of −10.7 ± 0.2 dB is observed. The average squeeze of −10 ± 0.2 dB in continuous operation for 60 min is demonstrated. Finally, the intracavity loss of degenerate optical parametric amplifier (DOPA) and the initial bright squeezed light can be calculated to be 0.0021 and −15.5 ± 0.2 dB, respectively. Through the above experimental and theoretical analysis, the direction of improving bright squeeze level is pointed out.
5

Slusher, R. E., P. Grangier, A. LaPorta, B. Yurke und M. J. Potasek. „Pulsed Squeezed Light“. Physical Review Letters 59, Nr. 22 (30.11.1987): 2566–69. http://dx.doi.org/10.1103/physrevlett.59.2566.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wheeler, James T. „Gravitationally squeezed light“. General Relativity and Gravitation 21, Nr. 3 (März 1989): 293–305. http://dx.doi.org/10.1007/bf00764102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tzallas, Paraskevas. „Squeezed light effect“. Nature Photonics 17, Nr. 6 (Juni 2023): 463–64. http://dx.doi.org/10.1038/s41566-023-01218-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zhang, Yan, Juan Yu, Peng-Fei Yang und Jun-Xiang Zhang. „Preparation of continuously tunable orthogonal squeezed light filed corresponding to cesium D<sub>1</sub> line“. Acta Physica Sinica 71, Nr. 4 (2022): 044203. http://dx.doi.org/10.7498/aps.71.20211382.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The non-classical light resonance on the cesium D<sub>1</sub> (894.6 nm) line has important applications in solid-state quantum information networks due to its unique advantages. The cesium D<sub>1</sub> line has a simplified hyperfine structure and can be used to realize a light-atom interface. In our previous work, we demonstrated 2.8-dB quadrature squeezed vacuum light at cesium D<sub>1</sub> line in an optical parametric oscillator(OPO) with a periodically poled KTP(PPKTP) crystal. However, the squeezing level is relatively low, and the tunability that has practical significance for squeezed light has not been further investigated. Theoretically, the increase of the transmittance of output mirror and the decrease of the intra-cavity loss of the OPO can improve the squeezing level. Here, we use super-polished and optimal coating cavity mirrors to improve the nonlinear process in OPO. We prepare 447.3 nm blue light from 894.6 nm fundamental light by a second harmonic generation cavity (SHG). The SHG is a two-mirror standing-wave cavity with a PPKTP crystal as the nonlinear medium. The power of generated blue laser is 32 mW when the incident infrared power is 120 mW. Using the blue light to pump an OPO, we achieve quadrature squeezed vacuum light at cesium D<sub>1</sub> line. The OPO is a two-mirror standing-wave cavity with a PPKTP crystal. The threshold of OPO is reduced to 28 mW. The squeezing level of generated quadrature squeezed vacuum light is increased to 3.3 dB when the pump power is 15 mW. Taking into account the overall detection efficiency, the actual squeezing reaches 5.5 dB. We inject a weak signal beam into the OPO cavity to act as an optical parametric amplifier (OPA), and test the tunability of squeezzed light. The blue light and the squeezed light are tuned by using a low-frequency triangular wave signal to scan the Ti: sapphire laser. Gradually increasing the amplitude of the scanning triangle wave signal, the generated bright squeezed light can be continuously tuned over a range around 80 MHz without losing the stability of the whole system. The generated squeezed light offers the possibility for the efficient coupling between the non-classical source and solid medium in the process of quantum interface.
9

Mehmet, Moritz, und Henning Vahlbruch. „The Squeezed Light Source for the Advanced Virgo Detector in the Observation Run O3“. Galaxies 8, Nr. 4 (26.11.2020): 79. http://dx.doi.org/10.3390/galaxies8040079.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
From 1 April 2019 to 27 March 2020, the Advanced Virgo detector, together with the two Advanced LIGO detectors, conducted the third joint scientific observation run O3, aiming for further detections of gravitational wave signals from astrophysical sources. One of the upgrades to the Virgo detector for O3 was the implementation of the squeezed light technology to improve the detector sensitivity beyond its classical quantum shot noise limit. In this paper, we present a detailed description of the optical setup and performance of the employed squeezed light source. The squeezer was constructed as an independent, stand-alone sub-system operated in air. The generated squeezed states are tailored to exhibit high purity at intermediate squeezing levels in order to significantly reduce the interferometer shot noise level while keeping the correlated enhancement of quantum radiation pressure noise just below the actual remaining technical noise in the Advanced Virgo detector.
10

Polzik, E. S., J. Carri und H. J. Kimble. „Spectroscopy with squeezed light“. Physical Review Letters 68, Nr. 20 (18.05.1992): 3020–23. http://dx.doi.org/10.1103/physrevlett.68.3020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Giacobino, Elizabeth, Claude Fabre und Gerd Leuchs. „Communication by squeezed light“. Physics World 2, Nr. 2 (Februar 1989): 31–35. http://dx.doi.org/10.1088/2058-7058/2/2/25.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Teich, M. C., und B. E. A. Saleh. „Squeezed state of light“. Quantum Optics: Journal of the European Optical Society Part B 1, Nr. 2 (Dezember 1989): 153–91. http://dx.doi.org/10.1088/0954-8998/1/2/006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Fabre, C. „Squeezed states of light“. Physics Reports 219, Nr. 3-6 (Oktober 1992): 215–25. http://dx.doi.org/10.1016/0370-1573(92)90138-p.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Vaccaro, J. A., und D. T. Pegg. „Squeezed Atomic Light Amplifiers“. Journal of Modern Optics 34, Nr. 6-7 (Juni 1987): 855–72. http://dx.doi.org/10.1080/09500348714550791.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Knight, Peter. „Squeezed and Nonclassical Light“. Journal of Modern Optics 37, Nr. 1 (Januar 1990): 145–46. http://dx.doi.org/10.1080/09500349014550141.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Barnett, S. M. „Squeezed and Nonclassical Light“. Journal of Modern Optics 37, Nr. 5 (Mai 1990): 1005. http://dx.doi.org/10.1080/09500349014551011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

TUCCI, ROBERT R. „DIFFRACTION AND SQUEEZED LIGHT“. International Journal of Modern Physics B 07, Nr. 26 (30.11.1993): 4403–37. http://dx.doi.org/10.1142/s0217979293003735.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We discuss the effect of diffraction on squeezed light propagation. All electric fields concerned are approximated to be monochromatic and paraxial. We consider: (1)(propagation without gain) a squeezed signal propagating in free space, and (2)(propagation with gain) a squeezed signal propagating in a non-linear crystal which amplifies the signal by a process of frequency halving (degenerate parametric amplification). The pump beam required for this process is assumed to have a Gaussian amplitude profile. For propagation without gain, our expression for the final signal is exact, but for propagation with gain, it is given as a perturbative expansion. The lowest order term in the expansion neglects diffraction of the signal and assumes flat pump wavefronts. Higher order terms include these factors and thus improve the accuracy with which the signal’s transverse behavior is described. We present graphs showing the dependence of squeezing on pump and signal beam parameters. We also find and discuss approximate formulas that characterize these graphs in various regimes.
18

Teich, Malvin C., und Bahaa E. A. Saleh. „Squeezed and Antibunched Light“. Physics Today 43, Nr. 6 (Juni 1990): 26–34. http://dx.doi.org/10.1063/1.881246.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Shukla, Namrata, und Ranjana Prakash. „Alteration in non-classicality of light on passing through a linear polarization beam splitter“. Modern Physics Letters B 30, Nr. 21 (10.08.2016): 1650289. http://dx.doi.org/10.1142/s0217984916502894.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We observe the polarization squeezing in the mixture of a two mode squeezed vacuum and a simple coherent light through a linear polarization beam splitter. Squeezed vacuum not being squeezed in polarization, generates polarization squeezed light when superposed with coherent light. All the three Stokes parameters of the light produced on the output port of polarization beam splitter are found to be squeezed and squeezing factor also depends upon the parameters of coherent light.
20

Azuma, Hiroo. „Generation of a coherent squeezed-like state defined with the Lie–Trotter product formula using a nonlinear photonic crystal“. Journal of Physics D: Applied Physics 56, Nr. 47 (24.08.2023): 475101. http://dx.doi.org/10.1088/1361-6463/acefdc.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract In this paper, we investigate how to generate coherent squeezed-like light using a nonlinear photonic crystal. Because the photonic crystal reduces the group velocity of the incident light, if it is composed of a material with a second-order nonlinear optical susceptibility χ ( 2 ) , the interaction between the nonlinear material and the light passing through it strengthens and the quantum state of the emitted light is largely squeezed. Thus, we can generate a coherent squeezed-like light with a resonating cavity in which the nonlinear photonic crystal is placed. This coherent squeezed-like state is defined with the Lie–Trotter product formula and its mathematical expression is different from those of conventional coherent squeezed states. We show that we can obtain this coherent squeezed-like state with a squeezing level 15.9 dB practically by adjusting the physical parameters for our proposed method. Feeding the squeezed light whose average number of photons is given by one or two into a beam splitter and splitting the flow of the squeezed light into a pair of entangled light beams, we estimate their entanglement quantitatively. This paper is a sequel to Azuma (2022 J. Phys. D: Appl. Phys. 55 315106).
21

Aggarwal, Neha, Aranya B. Bhattacherjee und Man Mohan. „Generation of Atomic-Squeezed States via Pondermotively Squeezed Light“. Journal of Atomic, Molecular, Condensate and Nano Physics 3, Nr. 1 (17.01.2016): 17–25. http://dx.doi.org/10.26713/jamcnp.v3i1.345.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Lu, Bao Zhu, Si Wen Bi, Fei Feng, Meng Hua Kang und Fei Qin. „Experimental Study on the Imaging of the Squeezed State Light with -4.93dB Quantum-Noise Reduction at 1064 nm“. Advanced Materials Research 571 (September 2012): 439–44. http://dx.doi.org/10.4028/www.scientific.net/amr.571.439.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
A stable amplitude squeezed state light was generated by utilizing the optical parametric down-conversion (OPDC) technique based on periodically poled KTiOPO4(PPKTP) in an optical parametric oscillator (OPO) resonator. We observed a -4.93dB of squeezing in homodyne measurement. The imaging experiments of resolution target were conducted. It shown that the imaging resolution with squeezed state light as light source was 1.26 times that of the resolution with coherent light as light source. The squeezed state light was applied for imaging of real objects and we found that the imaging with squeezed light as light source is more distinct and has less distortion.
23

Fyath, Raad Sami, und Ismael Shanan Desher Alaskary. „Binary Quantum Communication using Squeezed Light: Numerical, Simulation, and Experimental Resuts“. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 11, Nr. 7 (17.11.2013): 2839–58. http://dx.doi.org/10.24297/ijct.v11i7.3490.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In this paper, the squeezed quantum state is generated using an optical parametric oscillator via a spontaneous parametric down conversion technique to investigate squeezed states with quantum noise in one quadrature below the standard quantum limit at the expense of the other. The setup involves four main parts: generation of Nd-YAG second harmonic via a ring resonator, squeezed cavity with a nonlinear crystal inside to generate the squeezed state, Pound-Drever-Hall technique to stabilize the laser in the squeezed cavity and balanced homodyne receiver with high efficiency to detect the squeezed state. A comparison in error probability is addressed between the quantum coherent classical and the quantum squeezed non-classical state in the presence of thermal noise and the dissipation. It is found that with extremely low number of photons, the squeezed state is robust against channel noise.
24

Bykov, Vladimir P. „Basic properties of squeezed light“. Uspekhi Fizicheskih Nauk 161, Nr. 10 (1991): 145. http://dx.doi.org/10.3367/ufnr.0161.199110f.0145.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Sperling, J., und W. Vogel. „Entanglement quasiprobabilities of squeezed light“. New Journal of Physics 14, Nr. 5 (31.05.2012): 055026. http://dx.doi.org/10.1088/1367-2630/14/5/055026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Qu, Kenan, und G. S. Agarwal. „Ramsey spectroscopy with squeezed light“. Optics Letters 38, Nr. 14 (12.07.2013): 2563. http://dx.doi.org/10.1364/ol.38.002563.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Grangier, P., R. E. Slusher, B. Yurke und A. LaPorta. „Squeezed-light–enhanced polarization interferometer“. Physical Review Letters 59, Nr. 19 (09.11.1987): 2153–56. http://dx.doi.org/10.1103/physrevlett.59.2153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Slusher, R. E., und B. Yurke. „Squeezed light for coherent communications“. Journal of Lightwave Technology 8, Nr. 3 (März 1990): 466–77. http://dx.doi.org/10.1109/50.50742.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Dalton, B. J., Z. Ficek und S. Swain. „Atoms in squeezed light fields“. Journal of Modern Optics 46, Nr. 3 (März 1999): 379–474. http://dx.doi.org/10.1080/09500349908231278.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Bullough, R. K. „Squeezed and non-classical light“. Nature 333, Nr. 6174 (Juni 1988): 601–2. http://dx.doi.org/10.1038/333601a0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Bykov, Vladimir P. „Basic properties of squeezed light“. Soviet Physics Uspekhi 34, Nr. 10 (31.10.1991): 910–24. http://dx.doi.org/10.1070/pu1991v034n10abeh002528.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Bell, A. S., E. Riis und A. I. Ferguson. „Bright tunable ultraviolet squeezed light“. Optics Letters 22, Nr. 8 (15.04.1997): 531. http://dx.doi.org/10.1364/ol.22.000531.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Ralph, T. C., und P. K. Lam. „Teleportation with Bright Squeezed Light“. Physical Review Letters 81, Nr. 25 (21.12.1998): 5668–71. http://dx.doi.org/10.1103/physrevlett.81.5668.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Lawrie, B. J., P. D. Lett, A. M. Marino und R. C. Pooser. „Quantum Sensing with Squeezed Light“. ACS Photonics 6, Nr. 6 (13.05.2019): 1307–18. http://dx.doi.org/10.1021/acsphotonics.9b00250.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Li, Shiqun, und Ling-An Wu. „Phase Conjugation of Squeezed Light“. Chinese Physics Letters 10, Nr. 4 (April 1993): 220–22. http://dx.doi.org/10.1088/0256-307x/10/4/009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

SLUSHER, R. E., L. W. HOLLBERG, B. YURKE, J. C. MERTZ und J. F. VALLEY. „Squeezed states of light I“. Optics News 12, Nr. 12 (01.12.1986): 16. http://dx.doi.org/10.1364/on.12.12.000016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

KIMBLE, H. J. „Squeezed states of light III“. Optics News 12, Nr. 12 (01.12.1986): 17. http://dx.doi.org/10.1364/on.12.12.000017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

KIMBLE, H. J. „Squeezed states of light III“. Optics News 12, Nr. 12 (01.12.1986): 17_1. http://dx.doi.org/10.1364/on.12.12.0017_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Powell, Devin. „Squeezed light mutes quantum noise“. Nature 500, Nr. 7461 (August 2013): 131. http://dx.doi.org/10.1038/500131a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Fox, A. M., J. J. Baumberg, M. Dabbicco, B. Huttner und J. F. Ryan. „Squeezed Light Generation in Semiconductors“. Physical Review Letters 74, Nr. 10 (06.03.1995): 1728–31. http://dx.doi.org/10.1103/physrevlett.74.1728.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Patera, Giuseppe, und Mikhail I. Kolobov. „Temporal imaging with squeezed light“. Optics Letters 40, Nr. 6 (13.03.2015): 1125. http://dx.doi.org/10.1364/ol.40.001125.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Böhmer, B., und U. Leonhardt. „Correlation interferometer for squeezed light“. Optics Communications 118, Nr. 3-4 (Juli 1995): 181–85. http://dx.doi.org/10.1016/0030-4018(95)00272-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Bykov, V. P. „Buffer excitation of squeezed light“. Laser Physics Letters 2, Nr. 5 (01.05.2005): 223–36. http://dx.doi.org/10.1002/lapl.200410148.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Liu, Peng, Juan Li, Xiao Xiang, Ming-Tao Cao, Rui-Fang Dong, Tao Liu und Shou-Gang Zhang. „Experimental scheme of non-critical squeezed light field detection“. Acta Physica Sinica 71, Nr. 1 (2022): 010301. http://dx.doi.org/10.7498/aps.71.20211212.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The squeezed state, as an important quantum resource, has great potential applications in quantum computing, quantum communication and precision measurement. In the noncritically squeezed light theory, the predicted noncritically squeezed light can be generated by breaking the spontaneous rotational symmetry occurring in a degenerate optical parametric oscillator (DOPO) pumped above threshold. The reliability of this kind of squeezing is crucially important, as its quantum performance is robust to the pump power in experiment. However, the detected squeezing degrades rapidly in detection, because the squeezed mode orientation diffuses slowly, resulting in a small mode mismatch during the homodyne detection. In this paper, we propose an experimentally feasible scheme to detect noncritically squeezing reliable by employing the spatial mode swapping technic. Theoretically, the dynamic fluctuation aroused by random mode rotation in the squeezing detection can be compensated for perfectly, and 3 dB squeezing can be achieved robustly even with additional vacuum noise. Our scheme makes an important step forward for the experimental generation of noncritically squeezed light.
45

Dwyer, S., L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai et al. „Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light“. Optics Express 21, Nr. 16 (02.08.2013): 19047. http://dx.doi.org/10.1364/oe.21.019047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Abebe, Tamirat, Demissie Jobir, Chimdessa Gashu und Ebisa Mosisa. „Interaction of Two-Level Atom with Squeezed Vacuum Reservoir“. Advances in Mathematical Physics 2021 (29.01.2021): 1–7. http://dx.doi.org/10.1155/2021/6696253.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In this paper, the quantum properties of a two-level atom interaction with squeezed vacuum reservoir is throughly analyzed. With the aid of the interaction Hamiltonian and the master equation, we obtain the time evolution of the expectation values of the atomic operators. Employing the steady-state solution of these equations, we calculate the power spectrum and the second-order correlation function for the interaction of two-level atom with squeezed vacuum reservoir. It is found that the half width of the power spectrum of the light increases with the squeeze parameter, r . Furthermore, in the absence of decay constant and interaction time, it enhances the probability for the atom to be in the upper level.
47

Chihua Zhou, Chihua Zhou, Changchun Zhang Changchun Zhang, Hongbo Liu Hongbo Liu, Kui Liu Kui Liu, Hengxin Sun Hengxin Sun und Jiangrui Gao Jiangrui Gao. „Generation of temporal multimode squeezed states of femtosecond pulse light“. Chinese Optics Letters 15, Nr. 9 (2017): 092703. http://dx.doi.org/10.3788/col201715.092703.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Irastorza, Igor G. „Shedding squeezed light on dark matter“. Nature 590, Nr. 7845 (10.02.2021): 226–27. http://dx.doi.org/10.1038/d41586-021-00295-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

AOKI, Takao. „Quantum Information Experiments with Squeezed Light“. Review of Laser Engineering 31, Nr. 9 (2003): 599–604. http://dx.doi.org/10.2184/lsj.31.599.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Vyas, Reeta, und Surendra Singh. „Quantum statistics of broadband squeezed light“. Optics Letters 14, Nr. 20 (15.10.1989): 1110. http://dx.doi.org/10.1364/ol.14.001110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie