Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Spurious features“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Spurious features" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Spurious features"
Chen, Kaitao, Shiliang Sun und Jing Zhao. „CaMIL: Causal Multiple Instance Learning for Whole Slide Image Classification“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 2 (24.03.2024): 1120–28. http://dx.doi.org/10.1609/aaai.v38i2.27873.
Der volle Inhalt der QuelleSu, Donglin, Qian Shi, Hui Xu und Wang Wang. „Nonintrusive Load Monitoring Based on Complementary Features of Spurious Emissions“. Electronics 8, Nr. 9 (07.09.2019): 1002. http://dx.doi.org/10.3390/electronics8091002.
Der volle Inhalt der QuelleKARIMI, SAEED, und HAMDİ DİBEKLİOĞLU. „Uncovering and mitigating spurious features in domain generalization“. Turkish Journal of Electrical Engineering and Computer Sciences 32, Nr. 2 (14.03.2024): 320–37. http://dx.doi.org/10.55730/1300-0632.4071.
Der volle Inhalt der QuelleDu, Mengnan, Ruixiang Tang, Weijie Fu und Xia Hu. „Towards Debiasing DNN Models from Spurious Feature Influence“. Proceedings of the AAAI Conference on Artificial Intelligence 36, Nr. 9 (28.06.2022): 9521–28. http://dx.doi.org/10.1609/aaai.v36i9.21185.
Der volle Inhalt der QuelleMing, Yifei, Hang Yin und Yixuan Li. „On the Impact of Spurious Correlation for Out-of-Distribution Detection“. Proceedings of the AAAI Conference on Artificial Intelligence 36, Nr. 9 (28.06.2022): 10051–59. http://dx.doi.org/10.1609/aaai.v36i9.21244.
Der volle Inhalt der QuellePopovic, Brankica, und Ljiljana Maskovic. „Fingerprint minutiae filtering based on multiscale directional information“. Facta universitatis - series: Electronics and Energetics 20, Nr. 2 (2007): 233–44. http://dx.doi.org/10.2298/fuee0702233p.
Der volle Inhalt der QuelleARTUSO, Francesco, Francesco FIDECARO, Francesco D'ALESSANDRO, Gino IANNACE, Gaetano LICITRA, Geremia POMPEI und Luca FREDIANELLI. „Identifying optimal feature sets for acoustic signal classification in environmental noise measurements“. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, Nr. 4 (04.10.2024): 7540–49. http://dx.doi.org/10.3397/in_2024_3974.
Der volle Inhalt der QuelleChen, Ziliang, Yongsen Zheng, Zhao-Rong Lai, Quanlong Guan und Liang Lin. „Diagnosing and Rectifying Fake OOD Invariance: A Restructured Causal Approach“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 10 (24.03.2024): 11471–79. http://dx.doi.org/10.1609/aaai.v38i10.29028.
Der volle Inhalt der QuelleWang, Zhao, und Aron Culotta. „Robustness to Spurious Correlations in Text Classification via Automatically Generated Counterfactuals“. Proceedings of the AAAI Conference on Artificial Intelligence 35, Nr. 16 (18.05.2021): 14024–31. http://dx.doi.org/10.1609/aaai.v35i16.17651.
Der volle Inhalt der QuelleSmy, T., M. Salahuddin, S. K. Dew und M. J. Brett. „Explanation of spurious features in tungsten deposition using an atomic momentum model“. Journal of Applied Physics 78, Nr. 6 (15.09.1995): 4157–63. http://dx.doi.org/10.1063/1.359875.
Der volle Inhalt der QuelleBücher zum Thema "Spurious features"
Peacocke, Christopher. The Primacy of Metaphysics. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198835578.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Spurious features"
Chen, Chi-Yu, Pu Ching, Pei-Hsin Huang und Min-Chun Hu. „Where Are Biases? Adversarial Debiasing with Spurious Feature Visualization“. In MultiMedia Modeling, 1–14. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53305-1_1.
Der volle Inhalt der QuelleCurrie Hall, Daniel. „Contrast and content in phonological features“. In Primitives of Phonological Structure, 108–30. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780198791126.003.0005.
Der volle Inhalt der QuelleIosad, Pavel. „The ATR/Laryngeal connection and emergent features“. In Primitives of Phonological Structure, 161–208. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780198791126.003.0007.
Der volle Inhalt der QuelleHmood, Ali K., und Ching Y. Suen. „An Ensemble of Character Features and Fine-Tuned Convolutional Neural Network for Spurious Coin Detection“. In Frontiers in Pattern Recognition and Artificial Intelligence, 169–87. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811203527_0010.
Der volle Inhalt der QuelleGibbs, John C. „Moral Development, Moral Identity, and Prosocial Behavior“. In Moral Development and Reality, 157–79. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190878214.003.0006.
Der volle Inhalt der QuelleBag, Soumen. „A Nearest Opposite Contour Pixel Based Thinning Strategy for Character Images“. In Advances in Multimedia and Interactive Technologies, 123–40. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1025-3.ch006.
Der volle Inhalt der QuelleMiron, Jeffrey A., und Stephen P. Zeldes. „Seasonality, Cost Shocks, and the Production Smoothing Model of Inventories“. In Modelling Seasonality, 209–46. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780198773177.003.0010.
Der volle Inhalt der QuelleAllchin, Douglas. „Genes R Us“. In Sacred Bovines. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190490362.003.0027.
Der volle Inhalt der QuelleCottrell, G. A. „Maximum entropy and plasma physics“. In Maximum Entropy in Action, 109–38. Oxford University PressOxford, 1991. http://dx.doi.org/10.1093/oso/9780198539414.003.0005.
Der volle Inhalt der QuelleJ., Shiny Priyadarshini, und Gladis D. „Analogizing the Thinning Algorithm and Elicitation of Vascular Landmark in Retinal Images“. In Ophthalmology, 69–77. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5195-9.ch005.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Spurious features"
MaungMaung, AprilPyone, Huy H. Nguyen, Hitoshi Kiya und Isao Echizen. „Fine-Tuning Text-To-Image Diffusion Models for Class-Wise Spurious Feature Generation“. In 2024 IEEE International Conference on Image Processing (ICIP), 3910–16. IEEE, 2024. http://dx.doi.org/10.1109/icip51287.2024.10647627.
Der volle Inhalt der QuelleNeuhaus, Yannic, Maximilian Augustin, Valentyn Boreiko und Matthias Hein. „Spurious Features Everywhere - Large-Scale Detection of Harmful Spurious Features in ImageNet“. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2023. http://dx.doi.org/10.1109/iccv51070.2023.01851.
Der volle Inhalt der QuelleVenkataramani, Rahul, Parag Dutta, Vikram Melapudi und Ambedkar Dukkipati. „Causal Feature Alignment: Learning to Ignore Spurious Background Features“. In 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE, 2024. http://dx.doi.org/10.1109/wacv57701.2024.00460.
Der volle Inhalt der QuelleTornqvist, David, Thomas B. Schon und Fredrik Gustafsson. „Detecting spurious features using parity space“. In 2008 10th International Conference on Control, Automation, Robotics and Vision (ICARCV). IEEE, 2008. http://dx.doi.org/10.1109/icarcv.2008.4795545.
Der volle Inhalt der QuelleKhani, Fereshte, und Percy Liang. „Removing Spurious Features can Hurt Accuracy and Affect Groups Disproportionately“. In FAccT '21: 2021 ACM Conference on Fairness, Accountability, and Transparency. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3442188.3445883.
Der volle Inhalt der QuelleRamponi, Alan, und Sara Tonelli. „Features or Spurious Artifacts? Data-centric Baselines for Fair and Robust Hate Speech Detection“. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.naacl-main.221.
Der volle Inhalt der QuelleJoshi, Nitish, Xiang Pan und He He. „Are All Spurious Features in Natural Language Alike? An Analysis through a Causal Lens“. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.emnlp-main.666.
Der volle Inhalt der QuelleDu, Yanrui, Jing Yan, Yan Chen, Jing Liu, Sendong Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang und Bing Qin. „Less Learn Shortcut: Analyzing and Mitigating Learning of Spurious Feature-Label Correlation“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/560.
Der volle Inhalt der QuelleTakeda, Keita, Eiji Mitate und Tomoya Sakai. „Background Subtraction Approach to Unsupervised Cell Segmentation: Toward Excluding Spurious Features in Degraded Cytology Slides“. In 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI). IEEE, 2023. http://dx.doi.org/10.1109/isbi53787.2023.10230323.
Der volle Inhalt der QuelleYadav, Rohan Kumar, Lei Jiao, Ole-Christoffer Granmo und Morten Goodwin. „Robust Interpretable Text Classification against Spurious Correlations Using AND-rules with Negation“. In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/616.
Der volle Inhalt der Quelle