Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Spinning Satellites“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Spinning Satellites" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Spinning Satellites"
Shang, Yuting, Yifan Deng, Yuanli Cai, Yu Chen, Sirui He, Xuanchong Liao und Haonan Jiang. „Modeling and Disturbance Analysis of Spinning Satellites with Inflatable Protective Structures“. Aerospace 10, Nr. 11 (18.11.2023): 971. http://dx.doi.org/10.3390/aerospace10110971.
Der volle Inhalt der QuelleAslanov, Vladimir S., und Dmitry A. Sizov. „Attitude Dynamics of Spinning Magnetic LEO/VLEO Satellites“. Aerospace 10, Nr. 2 (17.02.2023): 192. http://dx.doi.org/10.3390/aerospace10020192.
Der volle Inhalt der QuelleLiu, Guotong, Fengchen Fan, Yuanqing Miao, Tianyu Zhang und Yushu Bian. „Modeling and analysis of tethered satellite systems based on spinning deployment“. Journal of Physics: Conference Series 2882, Nr. 1 (01.11.2024): 012076. http://dx.doi.org/10.1088/1742-6596/2882/1/012076.
Der volle Inhalt der QuelleJanssens, Frank L., und Jozef C. van der Ha. „On the stability of spinning satellites“. Acta Astronautica 68, Nr. 7-8 (April 2011): 778–89. http://dx.doi.org/10.1016/j.actaastro.2010.08.008.
Der volle Inhalt der QuelleKoch, B. P., und B. Bruhn. „Chaotic and Periodic Motions of Satellites in Elliptic Orbits“. Zeitschrift für Naturforschung A 44, Nr. 12 (01.12.1989): 1155–62. http://dx.doi.org/10.1515/zna-1989-1204.
Der volle Inhalt der QuelleTautz, Maurice, und Shu T. Lai. „Charging of fast spinning spheroidal satellites in sunlight“. Journal of Applied Physics 102, Nr. 2 (15.07.2007): 024905. http://dx.doi.org/10.1063/1.2756076.
Der volle Inhalt der QuelleLuo, Bingkun, und Peter J. Minnett. „Comparison of SLSTR Thermal Emissive Bands Clear-Sky Measurements with Those of Geostationary Imagers“. Remote Sensing 12, Nr. 20 (09.10.2020): 3279. http://dx.doi.org/10.3390/rs12203279.
Der volle Inhalt der QuelleBarbieux, Kévin, Olivier Hautecoeur, Maurizio De Bartolomei, Manuel Carranza und Régis Borde. „The Sentinel-3 SLSTR Atmospheric Motion Vectors Product at EUMETSAT“. Remote Sensing 13, Nr. 9 (28.04.2021): 1702. http://dx.doi.org/10.3390/rs13091702.
Der volle Inhalt der QuelleLyu, Jiang-Tao, Wei-Jun Zhong, Hong Liu, Yan Geng und De Ben. „Novel Approach to Determine Spinning Satellites’ Attitude by RCS Measurements“. Journal of Aerospace Engineering 34, Nr. 4 (Juli 2021): 04021023. http://dx.doi.org/10.1061/(asce)as.1943-5525.0001253.
Der volle Inhalt der QuelleJanssens, Frank L., und Jozef C. van der Ha. „Flat-spin recovery of spinning satellites by an equatorial torque“. Acta Astronautica 116 (November 2015): 355–67. http://dx.doi.org/10.1016/j.actaastro.2015.05.011.
Der volle Inhalt der QuelleDissertationen zum Thema "Spinning Satellites"
Pitre, J. D. Gilbert Carleton University Dissertation Engineering Mechanical and Aerospace. „Spinning mode algorithms for the satellite attitude sensor“. Ottawa, 1999.
Den vollen Inhalt der Quelle findenBoulinguez, Marc, und Pierre-Marie Carlier. „SYNCHRONOUS COMMAND GENERATOR IN A SINGLE STANDALONE CHASSIS FOR SPINNING SATELLITES“. International Foundation for Telemetering, 1998. http://hdl.handle.net/10150/609216.
Der volle Inhalt der QuelleDesigned for unattended 24 hours-a-day operation in automatic system environments, the 3801 TT&C Digital Processor Unit is the key communication unit for ground stations operating spacecraft, from integration to positioning phase and in-orbit operation. Its architecture and technology concept combine high performance, compactness and modularity. The 3801 TT&C Digital Processor Unit supports multiple formats in a single stand-alone chassis, and incorporates extensive interfacing and functional provisions to maximize effectiveness, reliability and dependability. It supports a number of configurations for satellite control applications and performs :* • Telemetry IF demodulation and transmission of data to a high-level communication interface, with time tagging and display of decommutated parameters, • Command generation, with FSK or PSK and FM or PM modulation at 70 MHz, • Ranging measurements and calibration using ESA, INTELSAT and major standards (tones and codes). In addition, the 3801 TT&C Digital Processor supports a Synchronous Command Generator for spinning satellite in a single stand-alone chassis and includes : • FM signal discrimination, for satellite spin reference information coming from the Telemetry Reception channel, • Synchronization Controller for providing the reference « top » for the transmission of the synchronous tones, • Tones Generation of frequency tones towards the PM/FM Modulator.
De, Oliveira Valente Moreno Rodrigues Ricardo. „Modélisation, commande robuste et analyse de missions spatiales complexes, flexibles et non stationnaires“. Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0062.
Der volle Inhalt der QuelleSpace missions have grown exponentially in complexity, with increasing demands for performance, precision and robustness. This evolution is driven by both technological advancements and the need for spacecraft to support diverse mission objectives, such as spinning spacecraft, on-orbit assembly and on-orbit servicing. These missions require the integration of large and complex designs, including dynamic fuel tanks, precise pointing systems and flexible structures that typically exhibit low-frequency, closely spaced and poorly damped modes. As spacecraft become more modular with multiple interconnected components like antennas and payloads, accurately modeling and controlling these complex multibody systems is crucial. The interactions between flexible structures and control systems can significantly impact mission-critical tasks such as attitude control and pointing accuracy, making it essential to address the coupled dynamics and external disturbances to ensure successful mission outcomes.In order to tackle these problems, this thesis presents a unified approach to the modeling and control of flexible multibody systems in space missions. It utilizes linear fractional representation (LFR) models to effectively capture the complex dynamics and uncertainties inherent in these scenarios. The research begins with the derivation of an LFR model for a flexible and spinning extsc{Euler}- extsc{Bernoulli} beam, fully accounting for centrifugal forces and their dependence on the angular velocity. This six degrees of freedom model integrates bending, traction and torsion dynamics and is designed to be compatible with the Two-Input-Two-Output Ports (TITOP) approach, enabling the modeling of complex multibody systems. This manuscript also introduces a multibody model for a spinning spacecraft mission scenario, followed by the design of a control system.The thesis further extends the application of LFR models to an on-orbit servicing mission, focusing on the robust control of attitude dynamics despite uncertainties and varying system parameters. A novel modeling approach for a docking mechanism is introduced, capturing the dynamic stiffness and damping properties of the closed-loop kinematic chain formed by the chaser and target spacecraft. The design of a feedback control system ensuring robust stability and performance across all mission phases is proposed, validated through structured singular value analysis.Building on this foundation, the thesis finally develops a comprehensive methodology for modeling an on-orbit assembly mission involving a multi-arm robot constructing a large flexible structure. This work also addresses the coupling dynamics between the robot and the evolving structure while considering significant changes in inertia and flexibility during the assembly process. A path optimization algorithm is ultimately proposed to ensure stable and efficient robotic operations, highlighting the effectiveness of the LFR-based modeling approach
Pitre, J. D. Gilbert. „Spinning mode algorithms for the Satellite Attitude Sensor“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0017/MQ48456.pdf.
Der volle Inhalt der QuelleJaar, Gilbert J. „Dynamics and control of a spacecraft-mounted robot capturing a spinning satellite“. Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=69591.
Der volle Inhalt der QuelleTrease, Nicole Marie. „New Theoretical Approaches for Solid-State NMR of Quadrupolar Nuclei with Applications to Glass Structure“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1243952229.
Der volle Inhalt der QuelleBücher zum Thema "Spinning Satellites"
Frost, Gerald. Attitude orientation control for a spinning satellite. Santa Monica, CA: RAND, 1991.
Den vollen Inhalt der Quelle findenSpence, John C. H. Lightspeed. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198841968.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Spinning Satellites"
Dlugos, Jenn, und Charlie Hatton. „Spinning 'Round Like a Satellite“. In Awesome Space Tech, 46–47. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003233190-30.
Der volle Inhalt der QuelleGuran, Ardéshir. „On the Stability of a Spinning Satellite in a Central Force Field“. In Bifurcation and Chaos: Analysis, Algorithms, Applications, 149–53. Basel: Birkhäuser Basel, 1991. http://dx.doi.org/10.1007/978-3-0348-7004-7_17.
Der volle Inhalt der QuelleChen, Shumin, Chenguang Liu, Yu M. Zabolotnov und Aijun Li. „Stable Deployment Control of a Multi-tethered Formation System Considering the Spinning Motion of Parent Satellite“. In Lecture Notes in Electrical Engineering, 771–82. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2635-8_57.
Der volle Inhalt der QuelleZhao, Chunhui, Xiaoran Cheng und Zhenyu Yang. „Measurement and Correction of Roll Angle of a Spinning Vehicle Based on a Single Antenna Satellite Receiver“. In Lecture Notes in Electrical Engineering, 2845–55. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8155-7_238.
Der volle Inhalt der Quelle„Attitude Control of Spinning Satellites“. In Multiple Scales Theory and Aerospace Applications, 417–39. Reston ,VA: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/5.9781600867644.0417.0439.
Der volle Inhalt der QuellePaluszek, Michael. „Spinning-satellite control-system design“. In ADCS - Spacecraft Attitude Determination and Control, 351–61. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-32-399915-1.00032-2.
Der volle Inhalt der QuelleSpence, John C. H. „Introduction“. In Lightspeed, 1–3. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198841968.003.0011.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Spinning Satellites"
Madonna, David Paolo, Paolo Gasbarri, Federica Angeletti, Marco Sabatini, Mauro Pontani, David Edmondo Pratesi, Fabrizio Gennari, Luigi Scialanga und Andrea Marchetti. „Modeling and Control of an Earth Observation Satellite Equipped with a Spinning Flexible Antenna“. In IAF Materials and Structures Symposium, Held at the 75th International Astronautical Congress (IAC 2024), 320–32. Paris, France: International Astronautical Federation (IAF), 2024. https://doi.org/10.52202/078369-0034.
Der volle Inhalt der QuelleTsuchiya, Kazuo. „Attitude Dynamics of Satellites: from Spinning Sat...“ In 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.iac-05-c1.2.01.
Der volle Inhalt der QuelleSoken, Halil Ersin, und Shin-ichiro Sakai. „Magnetometer only attitude estimation for spinning small satellites“. In 2017 8th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2017. http://dx.doi.org/10.1109/rast.2017.8002996.
Der volle Inhalt der QuelleCHEN, C., L. SLAFER und W. HUMMEL, JR. „Autonomous spin axis controller for geostationary spinning satellites“. In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-1984.
Der volle Inhalt der QuelleLee, Andrew J., und David P. Casasent. „Optical neural network system for pose determination of spinning satellites“. In Hybrid Image and Signal Processing II, herausgegeben von David P. Casasent und Andrew G. Tescher. SPIE, 1990. http://dx.doi.org/10.1117/12.21326.
Der volle Inhalt der QuelleLee, Andrew J., und David P. Casasent. „Pose determination of spinning satellites using tracks of novel regions“. In Fibers '91, Boston, MA, herausgegeben von Paul S. Schenker. SPIE, 1991. http://dx.doi.org/10.1117/12.25246.
Der volle Inhalt der QuelleDandré, Pierre, Laurent Pirson, Livio Ascani, Gianfranco Sechi, Ernesto Cerone und Stefano Pessina. „Meteosat Third Generation : first AOCS in flight results from PFM-I1 LEOP and commissioning“. In ESA 12th International Conference on Guidance Navigation and Control and 9th International Conference on Astrodynamics Tools and Techniques. ESA, 2023. http://dx.doi.org/10.5270/esa-gnc-icatt-2023-014.
Der volle Inhalt der QuelleNanos, Kostas, und Evangelos Papadopoulos. „On the Design of Coordinated Impedance Control Laws for De-orbiting and De-Spinning of Cooperative Satellites*“. In 2022 30th Mediterranean Conference on Control and Automation (MED). IEEE, 2022. http://dx.doi.org/10.1109/med54222.2022.9837266.
Der volle Inhalt der QuelleTian, Qiang, Jiang Zhao, Cheng Liu, Chunyan Zhou und Haiyan Hu. „Dynamics of Space Deployable Structures“. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46159.
Der volle Inhalt der QuelleBenoit, Alain, Tiago Soares, Vasco Pereira, Vincent Conings, Estefania Padilla, Enrico Melone, Martin Kruse, Peter Offterdinger und Holger Oelze. „Validation and Verification of the long-term dynamic evolution of non-operational satellites in LEO to enable Active Debris Removal missions“. In ESA 12th International Conference on Guidance Navigation and Control and 9th International Conference on Astrodynamics Tools and Techniques. ESA, 2023. http://dx.doi.org/10.5270/esa-gnc-icatt-2023-179.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Spinning Satellites"
Axeirad, Penina, und Charles P. Behre. GPS Based Attitude Determination for Spinning Satellites. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1997. http://dx.doi.org/10.21236/ada334738.
Der volle Inhalt der QuelleTautz, Maurice F. Analytic Models for Sunlight Charging of a Rapidly Spinning Satellite. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada416912.
Der volle Inhalt der Quelle