Auswahl der wissenschaftlichen Literatur zum Thema „Spinning Satellites“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Spinning Satellites" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Spinning Satellites"

1

Shang, Yuting, Yifan Deng, Yuanli Cai, Yu Chen, Sirui He, Xuanchong Liao und Haonan Jiang. „Modeling and Disturbance Analysis of Spinning Satellites with Inflatable Protective Structures“. Aerospace 10, Nr. 11 (18.11.2023): 971. http://dx.doi.org/10.3390/aerospace10110971.

Der volle Inhalt der Quelle
Annotation:
The escalating proliferation of space debris poses an increasing risk to spinning satellites, elevating the probability of hazardous collisions that can result in severe damage or total loss of functionality. To address this concern, a pioneering inflatable protective structure is employed to ensure the optimal functionality of spinning satellites. Additionally, a multi-body dynamic modeling method based on spring hinge unfolding/spring expansion is proposed to tackle the complex dynamics of spinning satellites with inflatable protective structures during flight. This method enables analysis of the motion parameters of spinning satellites. First, the structural composition of a spinning satellite with inflatable protective structures is introduced and its flight process is analyzed. Then, an articulated spring hinge unfolding model or a spring expansion model using the Newton–Euler method is established to describe the unfolding or expansion of the spinning satellite with inflatable protective structures during flight. Finally, the effects on the motion parameters of a spinning satellite are analyzed through simulation under various working conditions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Aslanov, Vladimir S., und Dmitry A. Sizov. „Attitude Dynamics of Spinning Magnetic LEO/VLEO Satellites“. Aerospace 10, Nr. 2 (17.02.2023): 192. http://dx.doi.org/10.3390/aerospace10020192.

Der volle Inhalt der Quelle
Annotation:
With the growing popularity of small satellites, the interaction with the air in low and especially in very low Earth orbits becomes a significant resource for passive angular stabilisation. However, the possibility of spin motion remains a considerable challenge for missions involving aerodynamically stabilised satellites. The goal of this paper was to investigate the attitude motion of arbitrarily spinning satellites in LEO and VLEO under the action of aerodynamic, gravitational, and magnetic torques, taking into account the aerodynamic damping. Using an umbrella-shaped deployable satellite as an example, the study demonstrated that both regular and chaotic attitude regimes are possible in the attitude motion. The occurrence of chaos was verified by means of Poincaré sections. The results revealed that, to prevent chaotic motion, active attitude control and reliable deployment techniques for aerodynamically stabilised satellites are needed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Liu, Guotong, Fengchen Fan, Yuanqing Miao, Tianyu Zhang und Yushu Bian. „Modeling and analysis of tethered satellite systems based on spinning deployment“. Journal of Physics: Conference Series 2882, Nr. 1 (01.11.2024): 012076. http://dx.doi.org/10.1088/1742-6596/2882/1/012076.

Der volle Inhalt der Quelle
Annotation:
Abstract In recent years, with space science and technology development, tethered satellites have been widely recognized and valued. This paper analyzes a tether satellite system based on spinning deployment by dynamic modeling and numerical simulation to analyze the factors affecting its deployment stability. Firstly, the dynamic model of the tethered satellite system under the action of spinning centrifugal force is established using the dumbbell model. Then, numerical simulation is conducted to study the factors affecting the deployment stability of the tethered satellite system. Finally, a feasible and stable deployment control method is proposed based on actual working conditions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Janssens, Frank L., und Jozef C. van der Ha. „On the stability of spinning satellites“. Acta Astronautica 68, Nr. 7-8 (April 2011): 778–89. http://dx.doi.org/10.1016/j.actaastro.2010.08.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Koch, B. P., und B. Bruhn. „Chaotic and Periodic Motions of Satellites in Elliptic Orbits“. Zeitschrift für Naturforschung A 44, Nr. 12 (01.12.1989): 1155–62. http://dx.doi.org/10.1515/zna-1989-1204.

Der volle Inhalt der Quelle
Annotation:
Abstract The spinning motion of aspherical satellites whose center of mass moves in a given elliptic polar orbit around an oblate central body is investigated using analytical and numerical methods. In the case of a magnetic satellite, dipole-dipole interaction with the central body is included. For small eccentricity, oblateness and magnetic interaction, the Melnikov method is used to study chaotic and perodic motions. The parameter dependence of the width of the chaotic layer and of the periodic resonances is discussed. For some selected parameter values the theoretical predictions are checked by numerical methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tautz, Maurice, und Shu T. Lai. „Charging of fast spinning spheroidal satellites in sunlight“. Journal of Applied Physics 102, Nr. 2 (15.07.2007): 024905. http://dx.doi.org/10.1063/1.2756076.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Luo, Bingkun, und Peter J. Minnett. „Comparison of SLSTR Thermal Emissive Bands Clear-Sky Measurements with Those of Geostationary Imagers“. Remote Sensing 12, Nr. 20 (09.10.2020): 3279. http://dx.doi.org/10.3390/rs12203279.

Der volle Inhalt der Quelle
Annotation:
The Sentinel-3 series satellites belong to the European Earth Observation satellite missions for supporting oceanography, land, and atmospheric studies. The Sea and Land Surface Temperature Radiometer (SLSTR) onboard the Sentinel-3 satellites was designed to provide a significant improvement in remote sensing of skin sea surface temperature (SSTskin). The successful application of SLSTR-derived SSTskin fields depends on their accuracies. Based on sensor-dependent radiative transfer model simulations, geostationary Geostationary Operational Environmental Satellite (GOES-16) Advanced Baseline Imagers (ABI) and Meteosat Second Generation (MSG-4) Spinning Enhanced Visible and Infrared Imager (SEVIRI) brightness temperatures (BT) have been transformed to SLSTR equivalents to permit comparisons at the pixel level in three ocean regions. The results show the averaged BT differences are on the order of 0.1 K and the existence of small biases between them are likely due to the uncertainties in cloud masking, satellite view angle, solar azimuth angle, and reflected solar light. This study demonstrates the feasibility of combining SSTskin retrievals from SLSTR with those of ABI and SEVIRI.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Barbieux, Kévin, Olivier Hautecoeur, Maurizio De Bartolomei, Manuel Carranza und Régis Borde. „The Sentinel-3 SLSTR Atmospheric Motion Vectors Product at EUMETSAT“. Remote Sensing 13, Nr. 9 (28.04.2021): 1702. http://dx.doi.org/10.3390/rs13091702.

Der volle Inhalt der Quelle
Annotation:
Atmospheric Motion Vectors (AMVs) are an important input to many Numerical Weather Prediction (NWP) models. EUMETSAT derives AMVs from several of its orbiting satellites, including the geostationary satellites (Meteosat), and its Low-Earth Orbit (LEO) satellites. The algorithm extracting the AMVs uses pairs or triplets of images, and tracks the motion of clouds or water vapour features from one image to another. Currently, EUMETSAT LEO satellite AMVs are retrieved from georeferenced images from the Advanced Very-High-Resolution Radiometer (AVHRR) on board the Metop satellites. EUMETSAT is currently preparing the operational release of an AMV product from the Sea and Land Surface Temperature Radiometer (SLSTR) on board the Sentinel-3 satellites. The main innovation in the processing, compared with AVHRR AMVs, lies in the co-registration of pairs of images: the images are first projected on an equal-area grid, before applying the AMV extraction algorithm. This approach has multiple advantages. First, individual pixels represent areas of equal sizes, which is crucial to ensure that the tracking is consistent throughout the processed image, and from one image to another. Second, this allows features that would otherwise leave the frame of the reference image to be tracked, thereby allowing more AMVs to be derived. Third, the same framework could be used for every LEO satellite, allowing an overall consistency of EUMETSAT AMV products. In this work, we present the results of this method for SLSTR by comparing the AMVs to the forecast model. We validate our results against AMVs currently derived from AVHRR and the Spinning Enhanced Visible and InfraRed Imager (SEVIRI). The release of the operational SLSTR AMV product is expected in 2022.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lyu, Jiang-Tao, Wei-Jun Zhong, Hong Liu, Yan Geng und De Ben. „Novel Approach to Determine Spinning Satellites’ Attitude by RCS Measurements“. Journal of Aerospace Engineering 34, Nr. 4 (Juli 2021): 04021023. http://dx.doi.org/10.1061/(asce)as.1943-5525.0001253.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Janssens, Frank L., und Jozef C. van der Ha. „Flat-spin recovery of spinning satellites by an equatorial torque“. Acta Astronautica 116 (November 2015): 355–67. http://dx.doi.org/10.1016/j.actaastro.2015.05.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Spinning Satellites"

1

Pitre, J. D. Gilbert Carleton University Dissertation Engineering Mechanical and Aerospace. „Spinning mode algorithms for the satellite attitude sensor“. Ottawa, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Boulinguez, Marc, und Pierre-Marie Carlier. „SYNCHRONOUS COMMAND GENERATOR IN A SINGLE STANDALONE CHASSIS FOR SPINNING SATELLITES“. International Foundation for Telemetering, 1998. http://hdl.handle.net/10150/609216.

Der volle Inhalt der Quelle
Annotation:
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California
Designed for unattended 24 hours-a-day operation in automatic system environments, the 3801 TT&C Digital Processor Unit is the key communication unit for ground stations operating spacecraft, from integration to positioning phase and in-orbit operation. Its architecture and technology concept combine high performance, compactness and modularity. The 3801 TT&C Digital Processor Unit supports multiple formats in a single stand-alone chassis, and incorporates extensive interfacing and functional provisions to maximize effectiveness, reliability and dependability. It supports a number of configurations for satellite control applications and performs :* • Telemetry IF demodulation and transmission of data to a high-level communication interface, with time tagging and display of decommutated parameters, • Command generation, with FSK or PSK and FM or PM modulation at 70 MHz, • Ranging measurements and calibration using ESA, INTELSAT and major standards (tones and codes). In addition, the 3801 TT&C Digital Processor supports a Synchronous Command Generator for spinning satellite in a single stand-alone chassis and includes : • FM signal discrimination, for satellite spin reference information coming from the Telemetry Reception channel, • Synchronization Controller for providing the reference « top » for the transmission of the synchronous tones, • Tones Generation of frequency tones towards the PM/FM Modulator.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

De, Oliveira Valente Moreno Rodrigues Ricardo. „Modélisation, commande robuste et analyse de missions spatiales complexes, flexibles et non stationnaires“. Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0062.

Der volle Inhalt der Quelle
Annotation:
La complexité des missions spatiales a augmenté de façon exponentielle, avec des exigences croissantes en matière de performance, de précision et de robustesse. Cette évolution est due à la fois aux progrès technologiques et à la nécessité de satisfaire de nouveaux défis, tels que les satellites en rotation (spinnés), l'assemblage en orbite et le service en orbite. Ces missions nécessitent l'intégration de systèmes mécaniques complexes, notamment des réservoirs de carburant liquide et ballotant, des systèmes de pointage précis et des structures flexibles qui présentent généralement des modes à basse fréquence, proches en fréquence et peu amortis. À mesure que les engins spatiaux deviennent plus modulaires avec plusieurs composants interconnectés tels que les antennes et les charges utiles, il est essentiel de modéliser et de contrôler avec précision ces systèmes multicorps complexes. Les interactions entre les structures flexibles et les systèmes de contrôle peuvent avoir un impact significatif sur les tâches critiques telles que le contrôle de l'attitude et la précision du pointage. Il est donc essentiel de prendre en compte les dynamiques couplées et les perturbations externes pour garantir le succès de la mission.Afin de résoudre ces problèmes, cette thèse présente une approche unifiée de la modélisation et du contrôle des systèmes multicorps flexibles dans les missions spatiales. Elle utilise des modèles de représentation fractionnaire linéaire (LFR) pour capturer efficacement la dynamique complexe et les incertitudes inhérentes à ces scénarios. La recherche commence par la dérivation d'un modèle LFR pour une poutre extsc{Euler}- extsc{Bernoulli} flexible et en rotation, prenant en compte les forces centrifuges et leur dépendance par rapport à la vitesse angulaire. Ce modèle à six degrés de liberté (DOFs) intègre les dynamiques de flexion, de traction et de torsion et est conçu pour être compatible avec l'approche des ports à deux entrées et deux sorties (TITOP), permettant de modéliser des systèmes multicorps complexes. Ce manuscrit présente également un modèle multicorps pour un scénario de mission de vaisseau spatial en rotation, suivi de la conception d'un système de contrôle.La thèse étend l'application des modèles LFR à une mission de service en orbite, en se concentrant sur le contrôle robuste de la dynamique d'attitude malgré les incertitudes et les paramètres variables du système. Une nouvelle approche de modélisation pour le mécanisme d'amarrage est introduite pour prendre en compte les propriétés dynamiques de rigidité et d'amortissement de la chaîne cinématique en boucle fermée formée par le véhicule chasseur et le véhicule cible. Un système de contrôle par rétroaction assurant une stabilité et des performances robustes pendant toutes les phases de la mission est proposé et validé par une analyse structurée des valeurs singulières.A partir de ces éléments, la thèse développe finalement une méthodologie complète pour la modélisation d'une mission d'assemblage en orbite impliquant un robot à bras multiples construisant une grande structure flexible. Ce travail aborde également la dynamique de couplage entre le robot et la structure évolutive tout en considérant les changements significatifs d'inertie et de flexibilité au cours du processus d'assemblage. Un algorithme d'optimisation de planification de tâches est finalement proposé pour assurer des opérations robotiques stables et efficaces, mettant en évidence l'efficacité de l'approche de modélisation basée sur la représentation LFR
Space missions have grown exponentially in complexity, with increasing demands for performance, precision and robustness. This evolution is driven by both technological advancements and the need for spacecraft to support diverse mission objectives, such as spinning spacecraft, on-orbit assembly and on-orbit servicing. These missions require the integration of large and complex designs, including dynamic fuel tanks, precise pointing systems and flexible structures that typically exhibit low-frequency, closely spaced and poorly damped modes. As spacecraft become more modular with multiple interconnected components like antennas and payloads, accurately modeling and controlling these complex multibody systems is crucial. The interactions between flexible structures and control systems can significantly impact mission-critical tasks such as attitude control and pointing accuracy, making it essential to address the coupled dynamics and external disturbances to ensure successful mission outcomes.In order to tackle these problems, this thesis presents a unified approach to the modeling and control of flexible multibody systems in space missions. It utilizes linear fractional representation (LFR) models to effectively capture the complex dynamics and uncertainties inherent in these scenarios. The research begins with the derivation of an LFR model for a flexible and spinning extsc{Euler}- extsc{Bernoulli} beam, fully accounting for centrifugal forces and their dependence on the angular velocity. This six degrees of freedom model integrates bending, traction and torsion dynamics and is designed to be compatible with the Two-Input-Two-Output Ports (TITOP) approach, enabling the modeling of complex multibody systems. This manuscript also introduces a multibody model for a spinning spacecraft mission scenario, followed by the design of a control system.The thesis further extends the application of LFR models to an on-orbit servicing mission, focusing on the robust control of attitude dynamics despite uncertainties and varying system parameters. A novel modeling approach for a docking mechanism is introduced, capturing the dynamic stiffness and damping properties of the closed-loop kinematic chain formed by the chaser and target spacecraft. The design of a feedback control system ensuring robust stability and performance across all mission phases is proposed, validated through structured singular value analysis.Building on this foundation, the thesis finally develops a comprehensive methodology for modeling an on-orbit assembly mission involving a multi-arm robot constructing a large flexible structure. This work also addresses the coupling dynamics between the robot and the evolving structure while considering significant changes in inertia and flexibility during the assembly process. A path optimization algorithm is ultimately proposed to ensure stable and efficient robotic operations, highlighting the effectiveness of the LFR-based modeling approach
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pitre, J. D. Gilbert. „Spinning mode algorithms for the Satellite Attitude Sensor“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0017/MQ48456.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jaar, Gilbert J. „Dynamics and control of a spacecraft-mounted robot capturing a spinning satellite“. Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=69591.

Der volle Inhalt der Quelle
Annotation:
Issues associated with dynamical modelling and control of a spacecraft-mounted robotic manipulator capturing a spinning satellite are investigated in this research. The formulation of the post-capture dynamical equations of the system was carried out by writing the individual Lagrange's equation for the mother spacecraft, the two-link robotic manipulator, and the captured payload. These equations were then assembled to obtain the constrained dynamical equations of the system as a whole. This method, however, introduces the non-working constraint forces and moments which substantially complicate the dynamical analysis and therefore have to be eliminated. A novel technique that involves the use of the natural orthogonal complement of the velocity-constraint matrix was used in order to obtain a set of unconstrained independent equations. A computer code was written using FORTRAN and the IMSL subroutine DIVPAG was used to integrate the equations of motion. The pitch angle of the mother spacecraft, the joint angles of the manipulator, and their rates just after capture were calculated by solving the inverse kinematics problem and using impact dynamics principles. These were then used as initial conditions for the post-capture dynamics. A dynamical simulation of the system for the uncontrolled case was carried out to study the effect of the disturbance, resulting from the capture of the satellite, on the spacecraft/manipulator system. In light of the results corresponding to the uncontrolled system, a control algorithm, whose objective is to produce a set of feedback-linearized, homogeneous, and uncoupled equations, was designed and implemented. The effect of structural flexibility in the robot links on the response of the system was also investigated for both the uncontrolled and controlled cases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Trease, Nicole Marie. „New Theoretical Approaches for Solid-State NMR of Quadrupolar Nuclei with Applications to Glass Structure“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1243952229.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Spinning Satellites"

1

Frost, Gerald. Attitude orientation control for a spinning satellite. Santa Monica, CA: RAND, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Spence, John C. H. Lightspeed. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198841968.001.0001.

Der volle Inhalt der Quelle
Annotation:
This book tells the human story of one of mankind’s greatest intellectual adventures—how we understood that light travels at a finite speed, so that when we look up at the stars we are looking back in time. And how the search for an absolute frame of reference in the universe led inexorably to Einstein’s famous equation E = mc2 for the energy released by nuclear weapons which also powers our sun and the stars. From the ancient Greeks measuring the distance to the Sun, to today’s satellite navigation and Einstein’s theories, the book takes the reader on a gripping historical journey. How Galileo with his telescope discovered the moons of Jupiter and used their eclipses as a global clock, allowing travellers to find their longitude. How Roemer, noticing that the eclipses were sometimes late, used this delay to obtain the first measurement of the speed of light, which takes eight minutes to get to us from the Sun. From the international collaborations to observe the transits of Venus, including Cook’s voyage to Australia, to the extraordinary achievements of Young and Fresnel, whose discoveries eventually taught us that light travels as a wave but arrives as a particle, and the quantum weirdness which follows. In the nineteenth century we find Faraday and Maxwell, struggling to understand how light can propagate through the vacuum of space unless it is filled with a ghostly vortex Aether foam. We follow the brilliantly gifted experimentalists Hertz, discoverer of radio, Michelson with his search for the Aether wind, and Foucault and Fizeau with their spinning mirrors and lightbeams across the rooftops of Paris. The difficulties of sending messages faster than light, using quantum entanglement, and the reality of the quantum world conclude this saga.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Spinning Satellites"

1

Dlugos, Jenn, und Charlie Hatton. „Spinning 'Round Like a Satellite“. In Awesome Space Tech, 46–47. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003233190-30.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Guran, Ardéshir. „On the Stability of a Spinning Satellite in a Central Force Field“. In Bifurcation and Chaos: Analysis, Algorithms, Applications, 149–53. Basel: Birkhäuser Basel, 1991. http://dx.doi.org/10.1007/978-3-0348-7004-7_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Chen, Shumin, Chenguang Liu, Yu M. Zabolotnov und Aijun Li. „Stable Deployment Control of a Multi-tethered Formation System Considering the Spinning Motion of Parent Satellite“. In Lecture Notes in Electrical Engineering, 771–82. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2635-8_57.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zhao, Chunhui, Xiaoran Cheng und Zhenyu Yang. „Measurement and Correction of Roll Angle of a Spinning Vehicle Based on a Single Antenna Satellite Receiver“. In Lecture Notes in Electrical Engineering, 2845–55. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8155-7_238.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

„Attitude Control of Spinning Satellites“. In Multiple Scales Theory and Aerospace Applications, 417–39. Reston ,VA: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/5.9781600867644.0417.0439.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Paluszek, Michael. „Spinning-satellite control-system design“. In ADCS - Spacecraft Attitude Determination and Control, 351–61. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-32-399915-1.00032-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Spence, John C. H. „Introduction“. In Lightspeed, 1–3. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198841968.003.0011.

Der volle Inhalt der Quelle
Annotation:
This book tells the human story of one of mankind’s greatest intellectual adventures - how we understood that light travels at a finite speed, so that when we look up at the stars we are looking back in time. And how the search for an absolute frame of reference in the universe led inexorably to Einstein’s famous equation E = mc2 for the energy released by nuclear weapons, which also powers our sun and the stars. From the ancient Greeks measuring the distance to the sun, to today’s satellite navigation and Einstein’s theories, the book takes the reader on a gripping historical journey. How Galileo with his telescope discovered the moons of Jupiter and used their eclipses as a global clock, allowing travellers to find their Longitude. How Roemer, noticing that the eclipses were sometimes late, used this delay to obtain the first measurement of the speed of light, which takes eight minutes to get to us from the Sun. From the international collaborations to observe the Transits of Venus, including Cook’s voyage to Australia, to the extraordinary achievements of Young and Fresnel, whose discoveries eventually taught us that light travels as a wave but arrives as a particle, and the quantum weirdness which follows. In the nineteenth century we find Faraday and Maxwell, struggling to understand how light can propagate through the vacuum of space unless it is filled with a ghostly vortex Aether foam. We follow the brilliantly gifted experimentalists Hertz, discoverer of radio, Michelson with his search for the Aether wind, and Foucault and Fizeau with their spinning mirrors and lightbeams across the rooftops of Paris, competing to be the first to measure the speed of light on earth. The difficulty of sending messages faster than light using quantum entanglement, and the reality of the quantum world conclude this saga.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Spinning Satellites"

1

Madonna, David Paolo, Paolo Gasbarri, Federica Angeletti, Marco Sabatini, Mauro Pontani, David Edmondo Pratesi, Fabrizio Gennari, Luigi Scialanga und Andrea Marchetti. „Modeling and Control of an Earth Observation Satellite Equipped with a Spinning Flexible Antenna“. In IAF Materials and Structures Symposium, Held at the 75th International Astronautical Congress (IAC 2024), 320–32. Paris, France: International Astronautical Federation (IAF), 2024. https://doi.org/10.52202/078369-0034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tsuchiya, Kazuo. „Attitude Dynamics of Satellites: from Spinning Sat...“ In 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.iac-05-c1.2.01.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Soken, Halil Ersin, und Shin-ichiro Sakai. „Magnetometer only attitude estimation for spinning small satellites“. In 2017 8th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2017. http://dx.doi.org/10.1109/rast.2017.8002996.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

CHEN, C., L. SLAFER und W. HUMMEL, JR. „Autonomous spin axis controller for geostationary spinning satellites“. In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-1984.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lee, Andrew J., und David P. Casasent. „Optical neural network system for pose determination of spinning satellites“. In Hybrid Image and Signal Processing II, herausgegeben von David P. Casasent und Andrew G. Tescher. SPIE, 1990. http://dx.doi.org/10.1117/12.21326.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lee, Andrew J., und David P. Casasent. „Pose determination of spinning satellites using tracks of novel regions“. In Fibers '91, Boston, MA, herausgegeben von Paul S. Schenker. SPIE, 1991. http://dx.doi.org/10.1117/12.25246.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dandré, Pierre, Laurent Pirson, Livio Ascani, Gianfranco Sechi, Ernesto Cerone und Stefano Pessina. „Meteosat Third Generation : first AOCS in flight results from PFM-I1 LEOP and commissioning“. In ESA 12th International Conference on Guidance Navigation and Control and 9th International Conference on Astrodynamics Tools and Techniques. ESA, 2023. http://dx.doi.org/10.5270/esa-gnc-icatt-2023-014.

Der volle Inhalt der Quelle
Annotation:
In December 2022, MTG PFM-I1, the first Meteosat Third Generation satellite, aiming at renewing the current Meteosat fleet, was launched on Ariane5 from Kourou, French Guiana. It will be followed by three others MTG-I (Imaging) Satellites and two MTG-S (Sounding) Satellites between 2025 and 2033. The attitude control concept changes from spinning satellites, which was the selected approach for the first and second generations, to a three-axes stabilization, offering better pointing performances as requested by the new generation of Meteosat instruments. The Imaging satellites embark two main instruments: the FCI (Flexible Combine Imager, successor of the MSG instrument, it will offer 16 channels between 0.3 and 13.3 microns, and deliver a full image of Earth every 10 minutes.) developed by Thales Alenia Space and the LI (Lightning Imager) manufactured by LEONARDO, whose objective is the early detection of severe storms as they develop. The MTG-S satellites carry an Infrared Sounder and the Copernicus Sentinel-4 instrument. The two MTG satellites are mounted on a common Platform developed by OHB. Thales Alenia Space leads the industrial consortium that is building the MTG family, with OHB as major partner. The launch has been followed by a LEOP (Launch and Early Orbit Phases) period of 15 days led by EUMETSAT and TELESPAZIO from Fucino in Italy. EUMETSAT and Telespazio was helped by a ESA/TAS/OHB project support team. The handover to EUMETSAT has been achieved in the last days of 2022 after the spacecraft has successfully reached its final position on geostationary orbit and has triggered the mode NOM/FPM (Fine Pointing Mode, very accurate Earth Pointing mode used to performed the observation). The satellite is now ready to undergo an eight months of commissioning activities whose objective will be to assess the satellite and instruments functionality, operability and performance against the space segment requirements. It will include the payloads activation and operability using the Instrument Quality Tool(IQT). This paper presents the AOCS MTG design and the way it has behaved during the LEOP phase, including some lessons learnt for the next FMs. Then it introduces the first main results of the commissioning phase, notably the FPM mode performances after instrument activation (pointing and attitude estimation with STR merging software, RW friction compensation, FCI scan pointing and compensation of instrument disturbance by PF, on-board orbit propagator… ).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Nanos, Kostas, und Evangelos Papadopoulos. „On the Design of Coordinated Impedance Control Laws for De-orbiting and De-Spinning of Cooperative Satellites*“. In 2022 30th Mediterranean Conference on Control and Automation (MED). IEEE, 2022. http://dx.doi.org/10.1109/med54222.2022.9837266.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tian, Qiang, Jiang Zhao, Cheng Liu, Chunyan Zhou und Haiyan Hu. „Dynamics of Space Deployable Structures“. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46159.

Der volle Inhalt der Quelle
Annotation:
The space industry is eager to have the advanced technology of large space structures composed of trusses, cables and meshes. These space structures will deploy on orbit for different space missions. The important scientific basis of the technology is the nonlinear dynamic modeling, analysis and control of those space structures during their deployment and service. In this study, many space deployable structures (such as satellites antenna and spinning solar sail) are described by using the absolute nodal coordinate formulation (ANCF), and the huge set of equations of motion are solve by high efficient parallel generalized-alpha method. Some numerical results are also validated by experiment results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Benoit, Alain, Tiago Soares, Vasco Pereira, Vincent Conings, Estefania Padilla, Enrico Melone, Martin Kruse, Peter Offterdinger und Holger Oelze. „Validation and Verification of the long-term dynamic evolution of non-operational satellites in LEO to enable Active Debris Removal missions“. In ESA 12th International Conference on Guidance Navigation and Control and 9th International Conference on Astrodynamics Tools and Techniques. ESA, 2023. http://dx.doi.org/10.5270/esa-gnc-icatt-2023-179.

Der volle Inhalt der Quelle
Annotation:
ESA under the umbrella of the Clean Space Initiative has promoted complementary activities in the area of Active Debris Removal (ADR). First efforts were devoted to the design of an ADR vehicle which would perform the rendezvous and capture with the orbital debris. It has become clear that the removal of unprepared satellites was extremely risky and complex. One of the main challenges driving the complexity of the rendezvous and capture of a debris is that its angular rates can build-up when the satellite becomes non-operational. Observations of several non-operational LEO satellites often show angular rates above 2 deg/s. The prediction and estimation of the angular rates and attitude of non-controlled satellites to be captured is therefore crucial for the design of the chaser and to confirm the feasibility of these critical operations. This paper proposes preliminary guidelines for the verification of the Passive Magnetic Detumbling (PMD) performance of a satellite in Low Earth Orbit which would have been unable to perform the required end-of-life functions (e.g. failure to perform controlled re-entry due to loss of mission). Such satellite is assumed to have been prepared for Design for Removal (D4R) during its development phase and to be equipped in particular with a Magnetic Detumbling System (e.g. automatic short circuiting of Magnetic Torquers), 2D Navigation Aids including features to support ground-tracking and attitude reconstruction, 3D Navigation Aids to support precise pose and attitude determination for the last phase of the capture and a Mechanical Capture Interface to allow its capture with a robotic gripper. To set up an adequate simulator and to master the simulation process, it is necessary to first acquire a good understanding of the impact of the different disturbances and of the Magnetic Damping System on the long-term dynamic of non-controlled satellites in LEO. Although simulations will tackle all dynamic configurations including tumbling at low angular rates, the spinning configuration deserves special investigations and analytical models based on spin-averaged and orbit-averaged torques and spinner dynamics have been developed by ESA and ABSpaceConsulting. They are very helpful to interpret the complex behaviour shown by the simulations, identify S/C driving parameters and representative initial conditions, and sweep parameters accordingly. This is why a quick theoretical survey of the impact of Gravity Gradient, Solar Radiation Pressure (YORP effect), S/C Residual Magnetic Dipole, atmospheric drag, Eddy currents and of course Magnetic Detumbling System is first proposed in this paper, highlighting which effects will guide the simulation exercise. Due to the complexity of the YORP effect created by Solar Radiation pressure and thermal infrared reemission, together with the low authority of current Passive Magnetic Damping Systems (short-circuited Magnetic Torquers and Eddy currents), the verification process to assess the PMD (Passive Magnetic Detumbling) performance will mainly rely on extensive simulation campaigns performed on a dedicated High-Fidelity simulator. Guidelines related to the set-up of a representative PMD High-Fidelity simulator are proposed in the paper. This covers a list of specific features which need to be represented (or not) in the satellite dynamics and the space environment simulation. Having to perform open-loop (no AOCS!) long duration simulations, numerical integration methods require special attention to avoid artefacts and wrong conclusions. A list of S/C and orbit parameters driving the PMD performance will then be proposed. The interest of an analytical framework to quickly sweep parameters, perform sensitiveness assessments and correlate future High-Fidelity simulations will be explained. Dedicated analyses related to YORP effect for an asymmetric S/C with a single, laterally deployed Solar Array will be suggested (impact of the thermo-optical properties of the front and back faces, of the misalignments of the Solar Array Drive axis with respect to the S/C principal axes …) together with mitigation actions. The paper will then provide selected examples of precursor simulations with their interpretation, covering a variety of initial conditions for Copernicus-like missions. Another strategic verification step, a post-launch one, will be the attitude reconstruction from the ground to be performed in-orbit, in order to assess GO/NO GO before a specific ADR mission. The current progress of R/D studies related to attitude reconstruction using the innovative navigation aids will be presented. At Hardware level, i.e. short-circuited Magnetic Torquers rotating in a weak magnetic field, a major validation milestone was the confirmation by tests that the magnetic core was indeed excited at the very low regimes of tumbling-induced currents. Then a method to obtain the magnetic tensor from measurement data was designed by ZARM Technik AG and successfully applied in 2022. Since the expected low inductions in the magnetic torquer are too small to be measured conventionally a three-step method was proposed. A multiple number of magnetic torquers were examined by ZARM Technik AG, permitting to correlate the analytical prediction of inductance (effective permeability is a critical parameter), resistance and consequently the magnetic tensor. The optimisation theory of Magnetic Torquers for PMD, still respecting the operational requirements, has also been successfully tested on a dedicated prototype. Preliminary conclusions and recommendations are finally proposed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Spinning Satellites"

1

Axeirad, Penina, und Charles P. Behre. GPS Based Attitude Determination for Spinning Satellites. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1997. http://dx.doi.org/10.21236/ada334738.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tautz, Maurice F. Analytic Models for Sunlight Charging of a Rapidly Spinning Satellite. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada416912.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie