Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Spinning Combustion Technology (SCT)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Spinning Combustion Technology (SCT)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Spinning Combustion Technology (SCT)"
Ivleva, T. P., und A. G. Merzhanov. „Spinning waves of infiltration-mediated combustion“. International Journal of Self-Propagating High-Temperature Synthesis 17, Nr. 3 (September 2008): 157–67. http://dx.doi.org/10.3103/s1061386208030011.
Der volle Inhalt der QuelleLOZINSKI, DAVID, und MOSHE MATALON. „Combustion of a Spinning Fuel Droplet“. Combustion Science and Technology 96, Nr. 4-6 (Januar 1994): 345–67. http://dx.doi.org/10.1080/00102209408935361.
Der volle Inhalt der QuelleWilson, K. J., K. C. Schadow, E. Gutmark und R. A. Smith. „Mixing and combustion in a spinning combustor“. Journal of Propulsion and Power 8, Nr. 4 (Juli 1992): 792–98. http://dx.doi.org/10.2514/3.23551.
Der volle Inhalt der QuelleBarooah, P., T. J. Anderson und J. M. Cohen. „Active Combustion Instability Control With Spinning Valve Actuator“. Journal of Engineering for Gas Turbines and Power 125, Nr. 4 (01.10.2003): 925–32. http://dx.doi.org/10.1115/1.1582495.
Der volle Inhalt der QuelleZhang, Mi, Hui Ren, Qingzhong Cui, Hanjian Li und Yongjin Chen. „Effects of Different Nanocarbon Materials on the Properties of Al/MoO3/NCM Thermite Prepared by Electrostatic Spinning“. Nanomaterials 12, Nr. 4 (14.02.2022): 635. http://dx.doi.org/10.3390/nano12040635.
Der volle Inhalt der QuelleKurdyumov, Vadim N., und Vladimir V. Gubernov. „Combustion waves in narrow samples of solid energetic material: Chaotic versus spinning dynamics“. Combustion and Flame 229 (Juli 2021): 111407. http://dx.doi.org/10.1016/j.combustflame.2021.111407.
Der volle Inhalt der QuelleCrespo-Anadon, Javier, Carlos J. Benito-Parejo, Stéphane Richard, Eleonore Riber, Bénédicte Cuenot, Camille Strozzi, Julien Sotton und Marc Bellenoue. „Experimental and LES investigation of ignition of a spinning combustion technology combustor under relevant operating conditions“. Combustion and Flame 242 (August 2022): 112204. http://dx.doi.org/10.1016/j.combustflame.2022.112204.
Der volle Inhalt der QuelleMilea, Andrei Silviu, Aurélien Perrier, Marcos Caceres, Alexis Vandel, Gilles Godard, Patrick Duchaine, Stéphane Richard, Gilles Cabot und Frédéric Grisch. „Investigation On A Novel Injector Concept For Spinning Combustion Technology In High-Pressure Conditions By Advanced Laser-Based Diagnostics“. Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 21 (08.07.2024): 1–13. http://dx.doi.org/10.55037/lxlaser.21st.93.
Der volle Inhalt der QuelleIvleva, T. P., und A. G. Merzhanov. „Effect of gas pressure on the laws of propagation of spinning waves during filtration combustion“. Combustion, Explosion, and Shock Waves 45, Nr. 5 (September 2009): 534–42. http://dx.doi.org/10.1007/s10573-009-0065-x.
Der volle Inhalt der QuelleTian, Sida, Zhonghua Zhan und Lei Chen. „Evolution of Fly Ash Aluminosilicates in Slagging Deposition during Oxy-Coal Combustion Investigated by 27Al Magic Angle Spinning Nuclear Magnetic Resonance“. Energy & Fuels 32, Nr. 12 (19.11.2018): 12896–904. http://dx.doi.org/10.1021/acs.energyfuels.8b02812.
Der volle Inhalt der QuelleDissertationen zum Thema "Spinning Combustion Technology (SCT)"
Milea, Andrei-Silviu. „Experimental investigation of innovative Low NOx / low soot injection systems for spinning combustiοn technology using advanced laser diagnostics“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR43.
Der volle Inhalt der QuelleAnthropogenic effects on the environment present a major challenge for the aeronautical industry. Increasingly stringent pollution regulations and the necessity for sustainable air transport are driving the nowadays research toward innovative propulsion systems. In this context, Safran Helicopter Engines is advancing its patented Spinning Combustion Technology (SCT), aimed at improving helicopter engine performance. Already implemented in the Arrano engine, SCT is now being refined to significantly reduce NOx and soot emissions. As part of the European LOOPS program, two novel fuel injection systems are under investigation: one operating in a rich combustion regime tailored for an RQL combustion chamber and the other designed for lean combustion. The scientific activity of this thesis focuses on the experimental characterization of these injection systems using state-of-the-art laser diagnostics optimized for high-pressure reactive environments. The HERON combustion facility at CORIA enables the analysis of combustion and pollutant performance under conditions representative of helicopter engines, with pressures from 8 to 14 bar, air inlet temperatures from 570 to 750 K, and equivalence ratios ranging from 0.6 to 1.67. Initial flame stability maps are established, followed by in-depth analyses of liquid spray properties using Phase Doppler Particle Anemometry (PDPA). High-speed Particle Imaging Velocimetry (PIV) captures aerodynamic fields under reactive and non-reactive conditions at 10 kHz. Flame structures are examined via OH-PLIF fluorescence imaging, while kerosene-PLIF evaluates liquid and vapor fuel distributions, particularly probing aromatic components in Jet A-1 kerosene. Furthermore, NO-PLIF imaging, combined with OH-PLIF and kerosene-PLIF, enables spatial correlations between flame structure, fuel distribution, and NO production zones. Soot formation and oxidation mechanisms are explored through Planar Laser-Induced Incandescence Imaging (PLII), integrated with OH-PLIF and kerosene-PLIF. Specific methods are developed to obtain 2D distributions of quantitative concentrations of NO, OH and soot volume fraction. Results reveal that the rich-burn injector produces an asymmetrical flame with enhanced upper-zone combustion efficiency due to locally intensified liquid fuel injection. Moderate soot levels are observed despite high equivalence ratios, while localized NO production, primarily near the flame, is attributed to the Zeldovich thermal mechanism. Conversely, the lean-burn injector forms a flame structure characteristic of stratified swirl flames, despite the minor asymmetry. Improved fuel evaporation leads to higher combustion efficiency, shorter flame lengths, and a reduction in NO formation, attributed to lower flame temperatures. In spite of the lean combustion conditions, moderate soot levels are measured for the second injector. Operating conditions strongly influence performance. Higher pressures accelerate spray atomization, increase spray expansion angles, and strengthen internal recirculation zones, reshaping flame structures. The increase in soot production at higher pressure is particularly demonstrated by the rich-burn injector due to constant equivalence ratios across all test conditions, while NO levels remain stable. For the lean-burn injector, leaner operation at elevated pressures moderates pressure effects, maintaining consistent soot levels and reducing NO concentrations. These findings highlight the potential of both injection systems for optimizing performance and reducing emissions in future helicopter engines
Konferenzberichte zum Thema "Spinning Combustion Technology (SCT)"
Akkor, Ilayda, Shachit S. Iyer, John Dowdle, Le Wang und Chrysanthos Gounaris. „Economic Optimization and Impact of Utility Costs on the Optimal Design of Piperazine-Based Carbon Capture“. In Foundations of Computer-Aided Process Design, 635–40. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.147100.
Der volle Inhalt der QuelleWalter Agostinelli, Pasquale, Yi Hao Kwah, Stephane Richard, Gorka Exilard, James R. Dawson, Laurent Gicquel und Thierry Poinsot. „Numerical and Experimental Flame Stabilization Analysis in the New Spinning Combustion Technology Framework“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15035.
Der volle Inhalt der QuelleTimnat, Y. M., und D. Laredo. „Simulation of Propellant Flow in a Spinning Combustion Chamber“. In Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1990. http://dx.doi.org/10.4271/901838.
Der volle Inhalt der QuelleLópez-Juárez, Marcos, Xiaoxiao Sun, Bobby Sethi, Pierre Gauthier und David Abbott. „Characterising Hydrogen Micromix Flames: Combustion Model Calibration and Evaluation“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14893.
Der volle Inhalt der QuelleAkbari, Amin, Scott Hill, Vincent McDonell und Scott Samuelsen. „Statistical Evaluation of CFD Predictions of Measured Mixing Properties of Hydrogen and Methane for Lean Premixed Combustion“. In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-46126.
Der volle Inhalt der QuelleMilea, Andrei-Silviu, Aurélien Perrier, Marcos Caceres, Alexis Vandel, Gilles Godard, Fabien Renard, Patrick Duchaine, Stephane Richard, Gilles Cabot und Frédéric Grisch. „Experimental Study of a Low NOx and Soot Injection System for Spinning Combustion Technology: Characterization of Soot and NO Formation Under Realistic Operating Conditions by Laser Diagnostics“. In ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/gt2023-102769.
Der volle Inhalt der QuelleTanneberger, Tom, Sebastian Schimek, Christian Oliver Paschereit und Panagiotis Stathopoulos. „Efficiency Measurement Approach for a Hydrogen Oxyfuel Combustor“. In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91403.
Der volle Inhalt der QuelleSaint-Hilaire, Gilles, Roxan Saint-Hilaire und Ylian Saint-Hilaire. „Quasiturbine: Low RPM High Torque Pressure Driven Turbine for Top Efficiency Power Modulation“. In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27088.
Der volle Inhalt der Quelle