Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Spindle stiffness“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Spindle stiffness" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Spindle stiffness"
Yang, Zhaohui, Hui Chen und Tianxiang Yu. „Effects of rolling bearing configuration on stiffness of machine tool spindle“. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232, Nr. 5 (22.02.2017): 775–85. http://dx.doi.org/10.1177/0954406217693659.
Der volle Inhalt der QuelleLoram, Ian D., Martin Lakie, Irene Di Giulio und Constantinos N. Maganaris. „The Consequences of Short-Range Stiffness and Fluctuating Muscle Activity for Proprioception of Postural Joint Rotations: The Relevance to Human Standing“. Journal of Neurophysiology 102, Nr. 1 (Juli 2009): 460–74. http://dx.doi.org/10.1152/jn.00007.2009.
Der volle Inhalt der QuelleChen, Shao Hsien, Shang Te Chen und Chien Cheng Hsu. „The Impact of Different Axial Oil Chamber Design on Hydrostatic Spindle“. Applied Mechanics and Materials 789-790 (September 2015): 296–99. http://dx.doi.org/10.4028/www.scientific.net/amm.789-790.296.
Der volle Inhalt der QuelleSakamoto, Haruhisa, Yuhei Maeki und Shinji Shimizu. „Change in Dynamic Characteristics of Spindle for Machining Centers Caused by Chucking Mechanism of Clamped Toolholders“. Key Engineering Materials 523-524 (November 2012): 521–26. http://dx.doi.org/10.4028/www.scientific.net/kem.523-524.521.
Der volle Inhalt der QuelleWang, Liping, Binbin Zhang, Jun Wu, Qinzhi Zhao und Junjian Wang. „Stiffness modeling, identification, and measuring of a rotating spindle“. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, Nr. 6 (01.12.2019): 1239–52. http://dx.doi.org/10.1177/0954406219890368.
Der volle Inhalt der QuelleKondo, Ryo, Daisuke Kono und Atsushi Matsubara. „Evaluation of Machine Tool Spindle Using Carbon Fiber Composite“. International Journal of Automation Technology 14, Nr. 2 (05.03.2020): 294–303. http://dx.doi.org/10.20965/ijat.2020.p0294.
Der volle Inhalt der QuelleChen, Runlin, Xingzhao Wang, Chen Du, Jun Zha, Kai Liu und Xiaoyang Yuan. „Stiffness Model and Experimental Study of Hydrostatic Spindle System considering Rotor Swing“. Shock and Vibration 2020 (15.05.2020): 1–8. http://dx.doi.org/10.1155/2020/5901432.
Der volle Inhalt der QuelleGaber, Omar, und Seyed M. Hashemi. „On the Free Vibration Modeling of Spindle Systems: A Calibrated Dynamic Stiffness Matrix“. Shock and Vibration 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/787518.
Der volle Inhalt der QuelleLi, Chang He, Wei Ping Mao und Yu Cheng Ding. „Numerical Investigation into Spindle System Stiffness of High-Speed Grinder“. Key Engineering Materials 487 (Juli 2011): 490–94. http://dx.doi.org/10.4028/www.scientific.net/kem.487.490.
Der volle Inhalt der QuelleLin, Shen Yung, C. T. Chung, R. W. Chang und C. K. Chang. „Effect of the Bearing Preload on the Characteristics of the Spindle Stiffness“. Key Engineering Materials 419-420 (Oktober 2009): 9–12. http://dx.doi.org/10.4028/www.scientific.net/kem.419-420.9.
Der volle Inhalt der QuelleDissertationen zum Thema "Spindle stiffness"
Chaigne, Agathe. „Cortical stiffness : a gatekeeper for spindle positioning in mouse oocytes“. Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066288/document.
Der volle Inhalt der QuelleMeiotic divisions are highly asymmetric divisions in size, generating a big cell, the oocyte, and two tiny cells, the polar bodies. This asymmetry is ensured by the migration of the first meiotic spindle to the closest cortex. This migration does not depend on microtubules but on Myosin-II and an F-actin meshwork nucleated by cooperation of straight filament nucleators Formin-2 and Spire1/2. Preliminary studies in the lab described a thickening of the F-actin cortex during spindle migration, but paradoxically cortical tension, a physical parameter describing the stiffness of the cell, drops during spindle migration. I have shown that this thickening is required for spindle migration and nucleated by the branched actin nucleator Arp2/3, under the control of the Mos/MAPK pathway. Furthermore, it promotes the decrease in cortical tension by triggering the delocalization of Myosin-II from the oocyte cortex, which is crucial for spindle migration. Finally, I have shown that the drop in cortical tension is an amplificatory mechanism to the initial unbalance of forces (due to a slight off-centered position of the nucleus) triggering the motion of the spindle
Sovadina, František. „Návrh vřeteníku soustruhu“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443734.
Der volle Inhalt der QuelleLaguna, Serrano Sergio. „Machining System Measurement and Modelling“. Thesis, KTH, Industriell produktion, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226333.
Der volle Inhalt der QuelleMaskinverktyg måste testas för att kontrollera att de beter sig korrekt vid bearbetning. En större produktion (kapacitet), förbättra noggrannheten i slutprodukterna (kvalitet) eller sänka kostnaderna är några av huvudmålen. Att minska underhållet av maskinerna, deras icke-produktiva tid och en högre kvalitet på de slutliga delarna har ett starkt inflytande i kostnaderna. Även maskiner konstruerade för samma specifikation presenterar olika egenskaper och beteenden, vilket leder till en minskning av flexibiliteten när det gäller att flytta verksamheten bland dem. Denna studie är inriktad på mätning och modellering av fyra verktygsmaskiner (M1, M2, M3 och M4), med samma specifikationer, ur statisk synvinkel. Metoder som används för att mäta alla dessa egenskaper är de cirkulära testerna under laddade förhållanden, med enheten Loaded Double Ball Bar (LDBB), som mäter positionsnoggrannhet och statisk styvhet. Olika tryck (0,5, 1, 3, 5, 6, 7 bar) och platser för LDBB har använts. Efter testerna visade alla maskiner goda egenskaper med detaljerna i M4, som hade en lägre styvhet än de andra tre på grund av dess bordsfästanordningar.
Dodgen, Eric Ray. „Spinal Implant with Customized and Non-Linear Stiffness“. BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2699.
Der volle Inhalt der QuelleMirbagheri, M. Mehdi (Mohammad Mehdi). „Intrinsic and reflex stiffness in normal & spastic spinal cord injured subjects“. Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36823.
Der volle Inhalt der QuelleFirst, we identified intrinsic and reflex contributions to dynamic ankle stiffness over a wide range of tonic voluntary contraction levels and ankle positions in healthy human subjects (normals). Intrinsic and reflex dynamic stiffness were strongly modulated with operating points; reflex mechanisms made their largest relative contribution to ankle stiffness at low levels of contraction and near the mid-positions. In some cases, reflexes contributed significantly to overall torque indicating that stretch reflexes have a potential to play a significant role in control of posture and movement.
Second, we examined the nature and origin of mechanical abnormalities associated with spasticity in chronic spinal cord injured subjects (SCIs). Reflex and intrinsic stiffness were larger in SCIs than normals. The magnitude and relative size of the changes were strongly dependent on joint position and contraction state. Overall joint stiffness was abnormally and significantly high in SCIs and stretch reflexes contributed strongly to it.
Third, we explored the effects of long-term FES-assisted walking on intrinsic and reflex dynamic stiffness in SCIs. Both reflex and intrinsic stiffness decreased substantially following long-term (>16 months) FES-assisted walking. The results indicate that this rehabilitation approach may cause spastic joint mechanics to become closer to normal behavior, and consequently could be useful for treatment as well as restoring function.
Moorhouse, Kevin Michael. „Role of Intrinsic and Reflexive Dynamics in the Control of Spinal Stability“. Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/29265.
Der volle Inhalt der QuellePh. D.
Zaragoza-Rivera, Yadetsie Nichole. „Pediatric Cervical Spine Range of Motion, Strength, and Stiffness in the Sagittal and Coronal Planes“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587411565508067.
Der volle Inhalt der QuelleDmowski, Jan. „Design and evaluation of a non-invasive spinal indentation device for assessing stiffness of human musculoskeletal system“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0017/MQ47979.pdf.
Der volle Inhalt der QuelleLee, Patrick James. „Low Back Biomechanical Analysis of Isometric Pushing and Pulling Tasks“. Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/30835.
Der volle Inhalt der QuelleMaster of Science
Odet, Margot. „Étude biomécanique d’une suspension implantable pour la préservation des disques intervertébraux dans le traitement des scolioses infantiles“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1135/document.
Der volle Inhalt der QuelleInfantile scoliosis is a progressive spinal deformity occurring in children under 3 years-old. The most common currently correction technic is the "growing rods" one. However, the implant rigidity causes intervertebral discs degeneration, which decreases the treatment efficiency. Recent studies have shown the benefic effect of flexible implants on discs. Our team has developed the concept of an implantable suspension that keeps the axial mobility of the instrumented segments, associated with a new fastening ball joint system. However, which is the stiffness value that preserves discs while correcting scoliosis? This thesis goal is to demonstrate the effectiveness of a suspension device for preserving inter-vertebral discs health and obtain quantifiable information on the optimum stiffness value. Prototype suspensions with ball joint fastenings, implantable in quadruped mammals and humans, have been de-veloped to study several ranges of stiffness values in vivo and in silico. An in vivo study on healthy adult goats was conducted to test these prototypes for two different stiffness values. The intervertebral discs health after 6 months was evaluated by MRI and histological sections. In parallel the biomechanics of a human spine was studied with a rigid multi-body numerical model previously validated against in vitro literature data. Healthy and scoliosis subjects instrumented with different devices (traditional rods, sus-pensions, with or without the ball) were modeled. The results of the in vivo study showed no significant difference between the several instrumen-tations. A longer test time seems necessary to observe the onset of disc degeneration. Numerical simulations have shown a marked mobility improvement for the segments in the in-strumented area with a suspension device associated with a ball joint system. However, the majority of the mobility is provided by the new fixing system and not by a greater axial flexibility. The suspension still allows additional gain for certain spine movements. No significant differences were found between the two studied stiffness values. The presence of a ball joint fastening decreases strongly the correction obtained during surgery distraction simulations. The suspension has an interest during correction by reducing the forces trans-mitted to the material when used alone. Future developments thus would lead to a suspension device associated with ball joint fasten-ings that also have rotational stiffness to keep both good scoliosis correction and segments mobility
Bücher zum Thema "Spindle stiffness"
van Gaalen, Floris, Désirée van der Heijde und Maxime Dougados. Diagnosis and classification of axial spondyloarthritis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198734444.003.0003.
Der volle Inhalt der QuelleSiebert, Stefan, Sengupta Raj und Alexander Tsoukas. Inflammatory back pain. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198755296.003.0006.
Der volle Inhalt der QuelleBuchanan, Elaine, und Chris Lavy. Low back pain. Herausgegeben von Patrick Davey und David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0064.
Der volle Inhalt der QuelleSiebert, Stefan, Sengupta Raj und Alexander Tsoukas. What are axial spondyloarthritis and ankylosing spondylitis? Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198755296.003.0001.
Der volle Inhalt der QuelleSiebert, Stefan, Raj Sengupta und Alexander Tsoukas, Hrsg. Axial Spondyloarthritis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198755296.001.0001.
Der volle Inhalt der QuelleSieper, Joachim. Ankylosing spondylitis. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0113.
Der volle Inhalt der QuelleSieper, Joachim. Axial spondyloarthropathies. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199642489.003.0113_update_003.
Der volle Inhalt der QuelleBuchteile zum Thema "Spindle stiffness"
Bhardwaj, Vibish S., Ramesh H. Aralaguppi, Ashok N. Badhe, Bhargav und Arun R. Rao. „Study and Estimation of Static Stiffness of Machine Tool Spindle“. In Lecture Notes on Multidisciplinary Industrial Engineering, 143–52. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3254-2_14.
Der volle Inhalt der QuelleAralaguppi, Ramesh H., K. B. Siddesh und Ashok N. Bade. „Joint Stiffness Estimation Between Spindle-Tool Holder by Considering Clamping Forces“. In Lecture Notes in Mechanical Engineering, 593–607. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0550-5_59.
Der volle Inhalt der QuelleBouaziz, Amel, Maher Barkallah, Slim Bouaziz, Jean-Yves Cholley und Mohamed Haddar. „Non-linear Stiffness and Damping Coefficients Effect on a High Speed AMB Spindle in Peripheral Milling“. In Mechatronic Systems: Theory and Applications, 99–110. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07170-1_10.
Der volle Inhalt der QuelleMelnyk, Oleksandr, Larysa Hlembotska, Nataliia Balytska, Viacheslav Holovnia und Mykola Plysak. „The Imitation Study of Taper Connections Stiffness of Face Milling Cutter Shank Using Machine Spindle in the SolidWorks Simulation Environment“. In Lecture Notes in Mechanical Engineering, 602–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22365-6_60.
Der volle Inhalt der QuellePham, Van-Hung, Manh-Toan Nguyen und Tuan-Anh Bui. „Improve the Loading Capacity and Stiffness of Hydrostatic Spindle Medium Sized Circular Grinding Machines Based on Simulation and Geometric Parameters of the Bearing“. In Springer Proceedings in Materials, 551–58. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45120-2_45.
Der volle Inhalt der QuelleEbara, Sohei, Masao Tanaka, Yoshiharu Morimoto, Takeo Harada, Noboru Hosono, Kazuo Yonenobu und Keiro Ono. „Intraoperative Measurement of Lumbar Spinal Stiffness“. In Lumbar Fusion and Stabilization, 45–53. Tokyo: Springer Japan, 1993. http://dx.doi.org/10.1007/978-4-431-68234-9_6.
Der volle Inhalt der QuelleFreudiger, Stefan. „Biomechanical Engineering in Choice of Different Stiffness Material“. In Cervical Spine, 173–78. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21608-9_14.
Der volle Inhalt der QuelleSommerich, Robert, Melissa (Kuhn) DeCelle und William J. Frasier. „Mechanical Implant Material Selection, Durability, Strength, and Stiffness“. In Handbook of Spine Technology, 1–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-33037-2_30-1.
Der volle Inhalt der QuelleSommerich, Robert, Melissa (Kuhn) DeCelle und William J. Frasier. „Mechanical Implant Material Selection, Durability, Strength, and Stiffness“. In Handbook of Spine Technology, 151–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-44424-6_30.
Der volle Inhalt der QuelleShah, V. G., M. C. Anderson, D. A. Lissy und C. J. Lissy. „Fixture Variations When Evaluating ASTM F1717 Construct Stiffness: Pin Diameter and Material“. In Static and Dynamic Spinal Implants: Are We Evaluating Them Appropriately?, 273–86. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2011. http://dx.doi.org/10.1520/stp49415t.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Spindle stiffness"
Wan, Shaoke, Jun Hong, Wenjun Su, Xiaohu Li, Yanhui Sun und Wei Chen. „Measurement of Dynamic Performances of High-Speed Rotating Spindle by Non-Contact Electromagnetic Loading Device“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70301.
Der volle Inhalt der QuelleNoel, David, Mathieu Ritou, Sebastien Le Loch und Benoit Furet. „Bearings Influence on the Dynamic Behavior of HSM Spindle“. In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82563.
Der volle Inhalt der QuelleNakao, Yohichi, Kohei Yamada und Kenji Suzuki. „Design of Spindle Supported by High Stiffness Water Hydrostatic Thrust Bearing“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62729.
Der volle Inhalt der QuelleChen, C. H., K. W. Wang und Y. C. Shin. „An Integrated Approach Toward the Dynamic Analysis of High-Speed Spindles: Part I — System Model“. In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0210.
Der volle Inhalt der QuelleAdams, Maurice L., und Michael A. Laurich. „Design, Analysis and Testing of an Inside-Out Tilting-Pad Journal Bearing With Real-Time Controllable Preload and Stiffness“. In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63067.
Der volle Inhalt der QuelleSu, Wenjun, Shaoke Wan, Yanhui Sun, Jun Hong und Xiaohu Li. „Contactless Measurement of Spindle Stiffness by Using Lateral Stator Magnetic Loader“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70382.
Der volle Inhalt der QuelleGao, Siyu, Kai Cheng und Hui Ding. „Multi-Physics Simulation Based Design and Analysis of a High Speed Aerostatic Spindle and its Performance Assessment“. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34086.
Der volle Inhalt der QuelleMatsubara, Masami, Takayuki Koizumi, Nobutaka Tsujiuchi, Fumiya Nakamura und Koji Matsuyama. „Identification of Tire Equivalent Stiffness for Prediction of Vertical Spindle Forces“. In 16th Asia Pacific Automotive Engineering Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2011. http://dx.doi.org/10.4271/2011-28-0093.
Der volle Inhalt der QuelleNoel, David, Sebastien Le Loch, Mathieu Ritou und Benoit Furet. „HSM Spindle Model Updating With Physical Phenomena Refinements“. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-13141.
Der volle Inhalt der QuelleHarder, John E., und Jeffrey L. Stein. „A Thermal-Based Spindle Bearing Load Controller: Preliminary Experimental Evaluation“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32035.
Der volle Inhalt der Quelle