Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Spin-wave separation of variables“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Spin-wave separation of variables" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Spin-wave separation of variables"
Kalnins, E. G., und G. C. Williams. „Symmetry operators and separation of variables for spin‐wave equations in oblate spheroidal coordinates“. Journal of Mathematical Physics 31, Nr. 7 (Juli 1990): 1739–44. http://dx.doi.org/10.1063/1.528670.
Der volle Inhalt der QuelleAmico, Luigi, Holger Frahm, Andreas Osterloh und Tobias Wirth. „Separation of variables for integrable spin–boson models“. Nuclear Physics B 839, Nr. 3 (November 2010): 604–26. http://dx.doi.org/10.1016/j.nuclphysb.2010.07.005.
Der volle Inhalt der QuelleZhdanov, R. Z. „Separation of variables in the nonlinear wave equation“. Journal of Physics A: Mathematical and General 27, Nr. 9 (07.05.1994): L291—L297. http://dx.doi.org/10.1088/0305-4470/27/9/009.
Der volle Inhalt der QuelleBEREST, YURI, und PAVEL WINTERNITZ. „HUYGENS' PRINCIPLE AND SEPARATION OF VARIABLES“. Reviews in Mathematical Physics 12, Nr. 02 (Februar 2000): 159–80. http://dx.doi.org/10.1142/s0129055x00000071.
Der volle Inhalt der QuelleZhdanov, R. Z., I. V. Revenko und V. I. Fushchich. „Separation of variables in two-dimensional wave equations with potential“. Ukrainian Mathematical Journal 46, Nr. 10 (Oktober 1994): 1480–503. http://dx.doi.org/10.1007/bf01066092.
Der volle Inhalt der QuelleSmirnov, Yu G., V. Yu Martynova, M. A. Moskaleva und A. V. Tikhonravov. „MODIFIED METHOD OF SEPARATION OF VARIABLES FOR SOLVING DIFFRACTION PROBLEMS ON MULTILAYER DIELECTRIC GRATINGS“. Eurasian Journal of Mathematical and Computer Applications 9, Nr. 4 (Dezember 2021): 76–88. http://dx.doi.org/10.32523/2306-6172-2021-9-4-76-88.
Der volle Inhalt der QuelleSergeev, S. M. „Functional Equations and Quantum Separation of Variables for 3d Spin Models“. Theoretical and Mathematical Physics 138, Nr. 2 (Februar 2004): 226–37. http://dx.doi.org/10.1023/b:tamp.0000015070.88403.f9.
Der volle Inhalt der QuelleOsetrin, Konstantin, und Evgeny Osetrin. „Shapovalov Wave-Like Spacetimes“. Symmetry 12, Nr. 8 (18.08.2020): 1372. http://dx.doi.org/10.3390/sym12081372.
Der volle Inhalt der QuelleCasals, Marc, Adrian C. Ottewill und Niels Warburton. „High-order asymptotics for the spin-weighted spheroidal equation at large real frequency“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475, Nr. 2222 (Februar 2019): 20180701. http://dx.doi.org/10.1098/rspa.2018.0701.
Der volle Inhalt der QuelleOsetrin, Konstantin, Ilya Kirnos, Evgeny Osetrin und Altair Filippov. „Wave-Like Exact Models with Symmetry of Spatial Homogeneity in the Quadratic Theory of Gravity with a Scalar Field“. Symmetry 13, Nr. 7 (29.06.2021): 1173. http://dx.doi.org/10.3390/sym13071173.
Der volle Inhalt der QuelleDissertationen zum Thema "Spin-wave separation of variables"
Trifa, Youssef. „Dynamiques de corrélations et d'intrication dans des gaz d'atomes froids“. Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0018.
Der volle Inhalt der QuelleThe quantum many-body problem, and especially the study of dynamical properties of a multipartite quantum system, is one of the hardest problems of modern physics. There exist only a few analytical results and exact numerical simulations require an amount of resources that grow exponentially with the system size.In this thesis, we studied correlations and entanglement properties for systems composed of magnetic atoms on a lattice, for instance via the generation of spin squeezing. For this purpose we have developed new approximate numerical methods that allow us to study large system sizes. This enabled us to propose protocols to generate an amount of spin squeezing that scales with the system size. The advantage is twofold. Since spin squeezing is an entanglement witness, this would allow for entanglement detection in a system of magnetic atoms - which has yet to be realized experimentally. Moreover, spin squeezing offers an important metrological advantage, asspin-squeezed states can be used for extremely precise measurements of external magnetic fields, far beyond what one can achieve within dependent atoms.Finally, we studied the generation of other forms of entanglement, namely Dicke squeezing (of spin or momentum), in systems of Bose condensed atoms. This form of entanglement is well-known in spin-1 atomic condensates. Here, we propose a protocol to generalize it to the case of momentum modes, using a time-dependent Hamiltonian. The entangled states generated during the dynamics are potentially useful for the precision measurements of inertial forces
Faldella, Simone. „Solutions de chaînes de spin XXZ et XYZ avec bords par la séparation des variables“. Thesis, Dijon, 2014. http://www.theses.fr/2014DIJOS075/document.
Der volle Inhalt der QuelleIn this thesis we give accounts on the solution of the open XXZ and XYZ quantum spin-1/2 chains with the most generic integrable boundary terms. By using the the Separation of Variables method (SoV), due to Sklyanin, we are able, in the inhomogeneous case, to build the complete set of eigenstates and the associated eigenvalues. The characterization of these quantities is made through a maximal system of N quadratic equations, where N is the size of the chain. Different methods, like the Algebraic Bethe ansatz (ABA) or other generalized Bethe ansatz techniques, have been used, in the past, in order to tackle these problems. None of them resulted effective in the reproduction of the full set of eigenstates and eigenvalues in the case of most general boundary conditions. A Vandermonde determinant formula for the scalar products of SoV states is obtained as well. The scalar product formula represents a first step towards the calculation of form factors and correlation functions
Slizovskiy, Sergey. „Yang-Mills Theory in Gauge-Invariant Variables and Geometric Formulation of Quantum Field Theories“. Doctoral thesis, Uppsala universitet, Teoretisk fysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-129670.
Der volle Inhalt der QuelleHasnain, Shahid. „Steady Periodic Water Waves Solutions Using Asymptotic Approach“. Thesis, Linköpings universitet, Tillämpad matematik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69421.
Der volle Inhalt der QuelleBücher zum Thema "Spin-wave separation of variables"
service), SpringerLink (Online, Hrsg. Electromagnetic wave scattering on nonspherical particles: Basic methodology and simulations. Berlin: Springer, 2009.
Den vollen Inhalt der Quelle findenMann, Peter. Wave Mechanics & Elements of Mathematical Physics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0005.
Der volle Inhalt der QuelleRother, Tom, und Michael Kahnert. Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations. Springer, 2016.
Den vollen Inhalt der Quelle findenRother, Tom, und Michael Kahnert. Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations. Springer, 2013.
Den vollen Inhalt der Quelle findenRother, Tom, und Michael Kahnert. Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations. Springer, 2013.
Den vollen Inhalt der Quelle findenRother, Tom. Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations. Springer, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Spin-wave separation of variables"
Garrett, Steven L. „Three-Dimensional Enclosures“. In Understanding Acoustics, 621–72. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44787-8_13.
Der volle Inhalt der QuelleDeville, Yannick, und Alain Deville. „New Classes of Blind Quantum Source Separation and Process Tomography Methods Based on Spin Component Measurements Along Two Directions“. In Latent Variable Analysis and Signal Separation, 204–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93764-9_20.
Der volle Inhalt der Quelle„One-Dimensional Wave Equation“. In Separation of Variables for Partial Differential Equations, 177–210. Chapman and Hall/CRC, 2005. http://dx.doi.org/10.4324/9780203498781-10.
Der volle Inhalt der Quelle„Potential, Heat, and Wave Equation“. In Separation of Variables for Partial Differential Equations, 17–40. Chapman and Hall/CRC, 2005. http://dx.doi.org/10.4324/9780203498781-4.
Der volle Inhalt der QuelleGreen, N. J. B. „Separations“. In Quantum Mechanics 1. Oxford University Press, 1997. http://dx.doi.org/10.1093/hesc/9780198557616.003.0003.
Der volle Inhalt der QuelleSteward, David R. „Analytic Elements from Separation of Variables“. In Analytic Element Method, 165–226. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198856788.003.0004.
Der volle Inhalt der QuelleSteiner, Erich. „Partial differential equations“. In The Chemistry Maths Book. Oxford University Press, 2008. http://dx.doi.org/10.1093/hesc/9780199205356.003.0014.
Der volle Inhalt der QuelleCollins, Peter J. „The Diffusion and Wave Equations and the Equation of Laplace“. In Differential and Integral Equations, 115–47. Oxford University PressOxford, 2006. http://dx.doi.org/10.1093/oso/9780198533825.003.0008.
Der volle Inhalt der QuelleAlwin, Duane F. „Developing Reliable Measures“. In Measurement Error in Longitudinal Data, 113–54. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198859987.003.0006.
Der volle Inhalt der QuelleDyall, Kenneth G., und Knut Faegri. „Spin Separation and the Modified Dirac Equation“. In Introduction to Relativistic Quantum Chemistry. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195140866.003.0022.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Spin-wave separation of variables"
Biletskyy, Vasyl, und Sergiy Yaroshko. „A Method of Generalized Separation of Variables for Solving Three-Dimensional Integral Equations“. In XIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic Acoustic Wave Theory. IEEE, 2006. http://dx.doi.org/10.1109/diped.2006.314315.
Der volle Inhalt der QuelleVelytiak, T. I., und S. A. Yaroskho. „A method of generalized separation of variables for solving two-dimensional integral equations“. In Proceedings of III International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. DIPED-98. IEEE, 1998. http://dx.doi.org/10.1109/diped.1998.730949.
Der volle Inhalt der QuelleSchmidt, Karsten, Jochen Wauer und Tom Rother. „Application of the separation of variables method to plane wave scattering on non-axisymmetric particles“. In Lidar Multiple Scattering Experiments, herausgegeben von Christian Werner, Ulrich G. Oppel und Tom Rother. SPIE, 2003. http://dx.doi.org/10.1117/12.512338.
Der volle Inhalt der QuelleBiletskyy, Vasyl, und Sergiy Yaroshko. „A Method of Generalized Separation of Variables for Solving Many-Dimensional Linear Fredholm Integral Equations“. In 2007 XIIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. IEEE, 2007. http://dx.doi.org/10.1109/diped.2007.4373583.
Der volle Inhalt der QuelleAbramov, Aleksander A., Nadezhda B. Konyukhova und Tatyana V. Levitina. „Numerical Investigation of the Problem of a Plane Acoustic Wave Scattering by a Triaxial Ellipsoid“. In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0433.
Der volle Inhalt der QuelleWang, Zerun, und Aichun Feng. „Investigation on Semi-Analytical Solution of Diffracted Wave Field Caused by a Bottom-Mounted Block“. In ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/omae2024-127500.
Der volle Inhalt der QuelleWang, Yuhan, und Sheng Dong. „Wave Attenuation Performance of Arranging a Rectangular Buoy in a Perforated Caisson Using Quadratic Pressure Drop Condition“. In ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-79289.
Der volle Inhalt der QuelleZhen, Yanpei. „ROGUE WAVES ARISING ON THE STANDING PERIODIC WAVE IN THE HIGH-ORDER ABLOWITZ-LADIK EQUATION“. In Pure & Applied Sciences International Conference, 14-15 March 2024, Singapore. Global Research & Development Services, 2024. http://dx.doi.org/10.20319/icstr.2024.2034.
Der volle Inhalt der QuelleLeblond, Ce´dric, Serguei Iakovlev und Jean-Francois Sigrist. „A Fully Elastic Model for Studying Submerged Circular Cylindrical Shells Subjected to a Weak Shock Wave“. In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77382.
Der volle Inhalt der QuelleQuan, Haiyong, und Zhixiong Guo. „Analytical Solution of Whispering-Gallery Modes“. In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33124.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Spin-wave separation of variables"
Mickens, Ronald, und Kale Oyedeji. Exponential and Separation of Variables Exact Solutions to the Linear, Delayed, Unidirectional Wave Equation. Atlanta University Center Robert W. Woodruff Library, 2019. http://dx.doi.org/10.22595/cau.ir:2020_mickens_oyedeji_exponential.
Der volle Inhalt der Quelle