Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Spin Polarized Molecular Systems“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Spin Polarized Molecular Systems" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Spin Polarized Molecular Systems"
Meyerovich, A. E., S. Stepaniants und F. Laloë. „Spin dynamics in spin-polarized Fermi systems“. Journal of Low Temperature Physics 101, Nr. 3-4 (November 1995): 803–8. http://dx.doi.org/10.1007/bf00753394.
Der volle Inhalt der QuelleSierra, Miguel A., David Sánchez, Rafael Gutierrez, Gianaurelio Cuniberti, Francisco Domínguez-Adame und Elena Díaz. „Spin-Polarized Electron Transmission in DNA-Like Systems“. Biomolecules 10, Nr. 1 (28.12.2019): 49. http://dx.doi.org/10.3390/biom10010049.
Der volle Inhalt der QuelleIvanova-Moser, K. D., und A. E. Meyerovich. „Boundary slip in spin-polarized quantum systems“. Journal of Low Temperature Physics 97, Nr. 1-2 (Oktober 1994): 55–90. http://dx.doi.org/10.1007/bf00752979.
Der volle Inhalt der QuelleShelykh, I. A., N. T. Bagraev und L. E. Klyachkin. „Spin depolarization in spontaneously polarized low-dimensional systems“. Semiconductors 37, Nr. 12 (Dezember 2003): 1390–99. http://dx.doi.org/10.1134/1.1634660.
Der volle Inhalt der QuelleIvanova, K. D., und A. E. Meyerovich. „Pressure diffusion and sound absorption in spin-polarized quantum systems“. Journal of Low Temperature Physics 72, Nr. 5-6 (September 1988): 461–75. http://dx.doi.org/10.1007/bf00682154.
Der volle Inhalt der QuelleChoi, YongMan, M. Scott, T. Söhnel und Hicham Idriss. „A DFT + U computational study on stoichiometric and oxygen deficient M–CeO2 systems (M = Pd1, Rh1, Rh10, Pd10 and Rh4Pd6)“. Phys. Chem. Chem. Phys. 16, Nr. 41 (2014): 22588–99. http://dx.doi.org/10.1039/c4cp03366c.
Der volle Inhalt der QuelleRidier, Karl, Béatrice Gillon, Arsen Gukasov, Gregory Chaboussant, Ana Borta, Olga Iasco, Dominique Luneau, Hiroshi Sakiyama, Masahiro Mikuriya und Makoto Handa. „Polarized Neutron Diffraction study of the molecular magnetic anisotropy“. Acta Crystallographica Section A Foundations and Advances 70, a1 (05.08.2014): C278. http://dx.doi.org/10.1107/s2053273314097216.
Der volle Inhalt der QuelleKentsch, Carsten, Wolfgang Henschel, David Wharam und Dieter P. Kern. „Spin-polarized edge states of quantum Hall systems on silicon basis“. Microelectronic Engineering 83, Nr. 4-9 (April 2006): 1753–56. http://dx.doi.org/10.1016/j.mee.2006.01.188.
Der volle Inhalt der QuelleTsukerblat, Boris, Andrew Palii und Juan Modesto Clemente-Juan. „Self-trapping of charge polarized states in four-dot molecular quantum cellular automata: bi-electronic tetrameric mixed-valence species“. Pure and Applied Chemistry 87, Nr. 3 (01.03.2015): 271–82. http://dx.doi.org/10.1515/pac-2014-0904.
Der volle Inhalt der QuelleBRODSKY, STANLEY J. „HADRON SPIN DYNAMICS“. International Journal of Modern Physics A 18, Nr. 08 (30.03.2003): 1531–50. http://dx.doi.org/10.1142/s0217751x03015027.
Der volle Inhalt der QuelleDissertationen zum Thema "Spin Polarized Molecular Systems"
Sarbadhikary, Prodipta. „Magnetic and transport properties of spin polarized molecular systems: theoretical perspective“. Thesis, University of North Bengal, 2021. http://ir.nbu.ac.in/handle/123456789/4668.
Der volle Inhalt der QuelleLin, Wenzhi. „Growth and Scanning Tunneling Microscopy Studies of Magnetic Films on Semiconductors and Development of Molecular Beam Epitaxy/Pulsed Laser Deposition and Cryogenic Spin-Polarized Scanning Tunneling Microscopy System“. Ohio University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1304610814.
Der volle Inhalt der QuelleBuckle, S. J. „Molecular field effects in electron spin polarized atomic deuterium“. Thesis, University of Sussex, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372071.
Der volle Inhalt der QuelleBrüggemann, Jochen [Verfasser], und Michael [Akademischer Betreuer] Thorwart. „Spin-polarized Transport in Nanoelectromechanical Systems / Jochen Brüggemann. Betreuer: Michael Thorwart“. Hamburg : Staats- und Universitätsbibliothek Hamburg, 2015. http://d-nb.info/1073248100/34.
Der volle Inhalt der QuelleBastjan, Marta. „Magneto-optical study of spin polarized states in strongly correlated systems“. München Verl. Dr. Hut, 2008. http://d-nb.info/989219291/04.
Der volle Inhalt der QuelleHoang, Danh tai. „Phase transition and Spin transport in Complex Systems : Frustrated spin systems, Molecular and Liquid Crystals“. Thesis, Cergy-Pontoise, 2012. http://www.theses.fr/2012CERG0621/document.
Der volle Inhalt der QuelleIn this thesis, we have used Monte Carlo simulations combined with different efficient techniques such as histogram methods to study the phase transitions and spin transport in various systems. The first part is devoted to the investigation of phase transition in frustrated spin systems: (i) the J_1-J_2 model with Ising spin in the full antiferromagnetic regime, (ii) the HCP lattice with both Ising and XY spin in the full antiferromagnetic regime. The results obtained show indeed a first-order transition as found earlier in other frustrated systems. The second part shows the ground state and phase transitions in molecular crystals and in dimer liquids. To deal with these systems, we have used the Potts model taking into the account the dipolar interaction to explain long-period layered structures experimentally observed. The results show amazing effects of this long-range interaction. The effect of surface exchange interaction has been considered in this work. Finally, we describe the resistivity of itinerant spins. We focused in particular on the effects of spin fluctuations in the phase transition region. Interesting results have been obtained showing a strong correlation between spin fluctuations and the behavior of the resistivity
Choi, Deung jang. „Kondo effect and detection of a spin-polarized current in a quantum point contact“. Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAE029/document.
Der volle Inhalt der QuelleThe Kondo effect of these single objects represents a model system to study electron correlations, which are nowadays of importance in relation to the emerging field of spin electronics, also known as spintronics, where chemical elements with partially filled d or f shells play a central role. Also of particular interest to spintronics is the interaction of single Kondo impurities with ferromagnetic leads or with other magnetic impurities. A Kondo impurity is in fact sensitive to its magnetic environment as the ASK resonance is usually split into two resonances in the presence of magnetic interactions. To some extent, the ASK resonance acts as a two-fold degenerate energy level of an atom which undergoes a Zeeman splitting in the presence of an effective magnetic field. Conversely, the detection of a Zeeman splitting indicates the existence of a magnetic field. In a QD, the coupling of the QD to the two leads is very weak in general, and the Kondo resonance is in the range of a few meV. Many studies focusing on magnetic interaction have been carried out on QDs, due to the high control that can be extended to the ASK resonance and its low energy range, allowing to split the resonance with a magnetic field of 10 T. Similar work has also been carried out in single-molecule or lithographically-defined devices. Although STM is an ideal tool to study the Kondo effect of single atoms, there is still a strong lack of experimental studies concerning atoms in the presence of magnetic interactions. This is partly due to the stronger impurity-metal hybridization compared to QDs, which places the ASK width in the range of 10 meV. An effective magnetic field of 100 T would be needed to split the resonance. The present Thesis is devoted precisely at studying the interaction between a single Kondo impurity with its magnetic environment through STM. A new strategy is adopted herecompared to former studies of this kind. Firstly, we contact a single-magnetic atom on a surface with a STM tip thereby eliminating the vacuum barrier. Secondly, we use ferromagnetic tips. The contact with a single atom allows probing the influence of ferromagnetism on the Kondo impurity i. e. its ASK resonance. But most importantly, the contact geometry produces sufficiently high current densities compared to the tunneling regime, so that the ASK resonance becomes sensitive to the presence of a spin-polarized current. This constitutes the first atomic scale detection of a spin-polarized current with a single Kondo impurity
Possanner, Stefan. „Modeling and simulation of spin-polarized transport at the kinetic and diffusive level“. Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1735/.
Der volle Inhalt der QuelleThe aim of this thesis is to contribute to the understanding of spin-induced phenomena in electron motion. These phenomena arise when electrons move through a (partially) magnetic environment, in such a way that its magnetic moment (spin) may interact with the surroundings. The pure quantum nature of the spin requires transport models that deal with effects like quantum coherence, entanglement (correlation) and quantum dissipation. On the meso- and macroscopic level it is not yet clear under which circumstances these quantum effects may transpire. The purpose of this work is, on the one hand, to derive novel spin transport models from basic principles and, on the other hand, to develop numerical algorithms that allow for a solution of these new and other existing model equations. The thesis consists of four parts. The first part has introductory character; it comprises an overview of fundamental spin-related concepts in electronic transport such as the giant-magneto-resistance (GMR) effect, the spin-transfer torque in metallic magnetic multilayers and the matrix-character of transport equations that take spin-coherent electron states into account. Special emphasis is placed on the modeling of the spin-transfer torque which represents the intersection of these concepts. In particular, we consider the diffusive Zhang-Levy-Fert (ZLF) model, an exchange-torque model that consists of the Landau-Lifshitz equation and a heuristic matrix spin-diffusion equation. A finite difference scheme based on Strang operator splitting is developed that enables a numerical, self-consistent solution of this non-linear system within multilayer structures. Finally, the model is tested by comparison of numerical results to recent experimental data. Parts two and three are the thematic core of this thesis. In part two we propose a matrix-Boltzmann equation that allows for the description of spin-coherent electron transport on a kinetic level. The novelty here is a linear collision operator in which the transition rates from momentum k to momentum k' are modeled by a 2x2 Hermitian matrix; hence the mean-free paths of spin-up and spin-down electrons are represented by the eigenvalues of this scattering matrix. After a formal derivation of the matrix-Vlasov equation as the semi-classical limit of the one-electron Wigner equation, the ensuing kinetic equation is studied with regard to existence, uniqueness and positive semi-definiteness of a solution. Furthermore, the new collision operator is investigated rigorously and the diffusion limit tc -> 0 of the mean scattering time is performed. The obtained matrix drift-diffusion equations are an improvement over the heuristic spin-diffusive model treated in part one. The latter is obtained in the limit of identical eigenvalues of the scattering matrix. Part three is dedicated to a first step towards the derivation of the matrix collision operator, introduced in part two, from first principles. For this, we augment the von Neumann equation of a composite quantum system by a dissipative term that relaxes the total state operator towards the Born approximation. Under the premise that the relaxation is the dominant process we obtain a hierarchy of non-Markovian master equations. The latter arises from an expansion of the total state operator in powers of the relaxation time tr. In the Born-Markov limit tr -> 0 the Lindblad master equation is recovered. It has the same structure as the collision operator proposed in part two heuristically. However, the Lindblad equation is still a microscopic equation; thus the next step would be to carry out the semi-classical limit of the result obtained. In part four we perform a numerical study of a quantum-diffusive, two-component spin model of the transport in a two-dimensional electron gas with Rashba spin-orbit coupling. This model assumes the electrons to be in a quantum equilibrium state in the form of a Maxwellian operator. We present two space-time discretizations of the model which also comprise the Poisson equation. In a first step pure time discretization is applied in order to prove the well-posedness of the two schemes, both of which are based on a functional formalism to treat the non-local relations between spin densities via the chemical potentials. We then use fully space-time discrete schemes to simulate the dynamics in a typical transistor geometry. Finite difference approximations applied in these schemes are first order in time and second order in space. The discrete functionals introduced are minimized with the help of a conjugate gradient-based algorithm in which the Newton method is applied to find the desired line minima
Chaudhury, Souma. „Quantum Control and Quantum Chaos in Atomic Spin Systems“. Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/195449.
Der volle Inhalt der QuelleMaheswari, Dhiraj. „QCD Process in Few Nucleon Systems“. FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3795.
Der volle Inhalt der QuelleBücher zum Thema "Spin Polarized Molecular Systems"
Conference on Spin Polarized Quantum Systems (1988 Torino, Italy). Spin polarized quantum systems: June 20-24, 1988, Villa Gualino, Torino. Herausgegeben von Stingari S, Institute for Scientific Interchange und Università degli studi di Trento. Dipartimento di fisica. Singapore: World Scientific, 1989.
Den vollen Inhalt der Quelle findenRibbing, Carl. Spin-orbit coupling in transition metal systems: A study of octahedral Ni(II). Stockholm: Division of Physical Chemistry, Arrhenius Laboratory, University of Stockholm, 1992.
Den vollen Inhalt der Quelle findenSpin Polarized Quantum Systems: June 20-24, 1988, Villa Gualino, Torino. World Scientific Pub Co Inc, 1989.
Den vollen Inhalt der Quelle findenQin, Peter Z., und Kurt Warncke. Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions Part B. Elsevier Science & Technology Books, 2015.
Den vollen Inhalt der Quelle findenQin, Peter Z., und Kurt Warncke. Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions Part A. Elsevier Science & Technology Books, 2015.
Den vollen Inhalt der Quelle findenQin, Peter Z., und Kurt Warncke. Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions Part B. Elsevier Science & Technology Books, 2015.
Den vollen Inhalt der Quelle findenQin, Peter Z., und Kurt Warncke. Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions Part A. Elsevier Science & Technology Books, 2015.
Den vollen Inhalt der Quelle findenLechner, Barbara A. J. Studying Complex Surface Dynamical Systems Using Helium-3 Spin-Echo Spectroscopy. Springer, 2014.
Den vollen Inhalt der Quelle findenLechner, Barbara A. J. Studying Complex Surface Dynamical Systems Using Helium-3 Spin-Echo Spectroscopy. Springer London, Limited, 2014.
Den vollen Inhalt der Quelle findenStudying Complex Surface Dynamical Systems Using Helium-3 Spin-Echo Spectroscopy. Springer International Publishing AG, 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Spin Polarized Molecular Systems"
Yamada, Toyo Kazu. „Spin Polarization of Single Organic Molecule Using Spin-Polarized STM“. In Molecular Architectonics, 381–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57096-9_15.
Der volle Inhalt der QuelleSiegmann, H. C. „Spin-Polarized Electrons and Magnetism 2000“. In Physics of Low Dimensional Systems, 1–14. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/0-306-47111-6_1.
Der volle Inhalt der QuelleWenk, Paul, Masayuki Yamamoto, Jun-ichiro Ohe, Tomi Ohtsuki, Bernhard Kramer und Stefan Kettemann. „Spin Polarized Transport and Spin Relaxation in Quantum Wires“. In Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals, 277–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10553-1_11.
Der volle Inhalt der QuelleThulstrup, Erik W., und Josef Michl. „Spectroscopic Applications of Molecular Alignment“. In Polarized Spectroscopy of Ordered Systems, 1–24. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3039-1_1.
Der volle Inhalt der QuelleSzulczewski, Greg. „Spin Polarized Electron Tunneling and Magnetoresistance in Molecular Junctions“. In Unimolecular and Supramolecular Electronics I, 275–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/128_2011_223.
Der volle Inhalt der QuelleKuball, H. G., H. Friesenhan und A. Schönhofer. „MOLECULAR ALIGNMENT — Origin, Methods of Measurement, and Theoretical Description“. In Polarized Spectroscopy of Ordered Systems, 85–104. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3039-1_4.
Der volle Inhalt der QuelleDediu, V., I. Bergenti, F. Biscarini, M. Cavallini, M. Murgia, P. Nozar, G. Ruani und C. Taliani. „Spin Polarized Effects at the Interface Between Manganites and Organic Semiconductors“. In Molecular Nanowires and Other Quantum Objects, 415–24. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2093-3_36.
Der volle Inhalt der QuelleMamaev, Yu A., A. V. Subashievf, Yu P. Yashin, A. N. Ambrazhei, H. J. Drouhin, G. Lampel, J. E. Clendenin, T. Maruyama und G. Mulhollan. „Spin Polarized Electron Transport and Emission from Strained Semiconductor Heterostructures“. In Physics of Low Dimensional Systems, 373–82. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/0-306-47111-6_35.
Der volle Inhalt der QuelleBustamante, Carlos, David Keller und Myeonghee Kim. „Theory of Absorption and Circular Dichroism of Large Inhomogeneous Molecular Aggregates“. In Polarized Spectroscopy of Ordered Systems, 357–80. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3039-1_15.
Der volle Inhalt der QuelleRessouche, E., und J. Schweizer. „Ab Initio Calculations Versus Polarized Neutron Diffraction for the Spin Density of Free Radicals“. In Molecular Magnets Recent Highlights, 119–37. Vienna: Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-6018-3_8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Spin Polarized Molecular Systems"
Toporkov, Dmitriy K., D. M. Nikolenko, I. A. Rachek, Yu V. Shestakov, A. V. Yurchenko, R. Engels, L. Huxold und M. Büscher. „Status of the Polarized Molecular Source“. In 23rd International Spin Physics Symposium. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.346.0178.
Der volle Inhalt der QuelleKartoshkin, Victor A., und George V. Klementiev. „Spectroscopy of short-lived spin-polarized molecular complexes“. In Luebeck - DL tentative, herausgegeben von Herbert M. Heise, Ernst H. Korte und Heinz W. Siesler. SPIE, 1992. http://dx.doi.org/10.1117/12.56480.
Der volle Inhalt der QuelleRakitzis, T., Giorgos Vasilakis, George Katsoprinakis, Konstantinos Tazes, Michalis Xygkis und Alexandros Spiliotis. „A NANOSECOND-RESOLVED ULTRAHIGH-DENSITY SPIN-POLARIZED HYDROGEN MAGNETOMETER“. In 2021 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2021. http://dx.doi.org/10.15278/isms.2021.wb02.
Der volle Inhalt der QuelleLenisa, P. „Nuclear Polarization of Molecular Hydrogen Recombined on Drifilm“. In SPIN 2002: 15th International Spin Physics Symposium and Workshop on Polarized Electron Sources and Polarimeters. AIP, 2003. http://dx.doi.org/10.1063/1.1607273.
Der volle Inhalt der QuelleWang, Wenyong, Curt A. Richter, David G. Seiler, Alain C. Diebold, Robert McDonald, C. Michael Garner, Dan Herr, Rajinder P. Khosla und Erik M. Secula. „Spin-polarized Inelastic Electron Tunneling Spectroscopy of Molecular Magnetic Tunnel Junctions“. In CHARACTERIZATION AND METROLOGY FOR NANOELECTRONICS: 2007 International Conference on Frontiers of Characterization and Metrology. AIP, 2007. http://dx.doi.org/10.1063/1.2799421.
Der volle Inhalt der QuelleMeyerovich, A. E. „Kinetic phenomena in spin-polarized quantum systems“. In Symposium on quantum fluids and solids−1989. AIP, 1989. http://dx.doi.org/10.1063/1.38831.
Der volle Inhalt der QuelleKrämer, Dirk. „The SMC polarized target—systems and operations“. In The 11th International symposium on high energy spin physics. AIP, 1995. http://dx.doi.org/10.1063/1.48928.
Der volle Inhalt der QuelleRyblewski, Radoslaw, Wojciech Florkowski, Bengt Friman, Amaresh Jaiswal und Enrico Speranza. „Relativistic fluid dynamics of spin-polarized systems of particles“. In XIII Quark Confinement and the Hadron Spectrum. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.336.0158.
Der volle Inhalt der QuelleBowen, K., D. Lindle, M. Piancastelli, W. Stolte, R. Guillemin und O. Hemmers. „NONDIPOLE EFFECTS IN CHIRAL SYSTEMS MEASURED WITH LINEARLY POLARIZED LIGHT“. In 70th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2015. http://dx.doi.org/10.15278/isms.2015.wg06.
Der volle Inhalt der QuelleHatanaka, K. „Experimental Studies on Three-Nucleon Systems at RCNP“. In SPIN 2002: 15th International Spin Physics Symposium and Workshop on Polarized Electron Sources and Polarimeters. AIP, 2003. http://dx.doi.org/10.1063/1.1607226.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Spin Polarized Molecular Systems"
Silvera, I. F. Fundamental properties of spin-polarized quantum systems. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/6361830.
Der volle Inhalt der QuelleSilvera, I. Fundamental properties of spin-polarized quantum systems. Office of Scientific and Technical Information (OSTI), Januar 1989. http://dx.doi.org/10.2172/5593974.
Der volle Inhalt der Quelle