Auswahl der wissenschaftlichen Literatur zum Thema „Spin Polarized Molecular Systems“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Spin Polarized Molecular Systems" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Spin Polarized Molecular Systems"

1

Meyerovich, A. E., S. Stepaniants und F. Laloë. „Spin dynamics in spin-polarized Fermi systems“. Journal of Low Temperature Physics 101, Nr. 3-4 (November 1995): 803–8. http://dx.doi.org/10.1007/bf00753394.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sierra, Miguel A., David Sánchez, Rafael Gutierrez, Gianaurelio Cuniberti, Francisco Domínguez-Adame und Elena Díaz. „Spin-Polarized Electron Transmission in DNA-Like Systems“. Biomolecules 10, Nr. 1 (28.12.2019): 49. http://dx.doi.org/10.3390/biom10010049.

Der volle Inhalt der Quelle
Annotation:
The helical distribution of the electronic density in chiral molecules, such as DNA and bacteriorhodopsin, has been suggested to induce a spin–orbit coupling interaction that may lead to the so-called chirality-induced spin selectivity (CISS) effect. Key ingredients for the theoretical modelling are, in this context, the helically shaped potential of the molecule and, concomitantly, a Rashba-like spin–orbit coupling due to the appearance of a magnetic field in the electron reference frame. Symmetries of these models clearly play a crucial role in explaining the observed effect, but a thorough analysis has been largely ignored in the literature. In this work, we present a study of these symmetries and how they can be exploited to enhance chiral-induced spin selectivity in helical molecular systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ivanova-Moser, K. D., und A. E. Meyerovich. „Boundary slip in spin-polarized quantum systems“. Journal of Low Temperature Physics 97, Nr. 1-2 (Oktober 1994): 55–90. http://dx.doi.org/10.1007/bf00752979.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Shelykh, I. A., N. T. Bagraev und L. E. Klyachkin. „Spin depolarization in spontaneously polarized low-dimensional systems“. Semiconductors 37, Nr. 12 (Dezember 2003): 1390–99. http://dx.doi.org/10.1134/1.1634660.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ivanova, K. D., und A. E. Meyerovich. „Pressure diffusion and sound absorption in spin-polarized quantum systems“. Journal of Low Temperature Physics 72, Nr. 5-6 (September 1988): 461–75. http://dx.doi.org/10.1007/bf00682154.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Choi, YongMan, M. Scott, T. Söhnel und Hicham Idriss. „A DFT + U computational study on stoichiometric and oxygen deficient M–CeO2 systems (M = Pd1, Rh1, Rh10, Pd10 and Rh4Pd6)“. Phys. Chem. Chem. Phys. 16, Nr. 41 (2014): 22588–99. http://dx.doi.org/10.1039/c4cp03366c.

Der volle Inhalt der Quelle
Annotation:
Molecular and dissociative adsorption processes of ethanol on stoichiometric and O-defected CeO2(111) surfaces alone as well as in the presence of one metal atom (Pd or Rh) are studied using spin-polarized density functional theory (DFT) with the GGA + U method (Ueff = 5.0 eV).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ridier, Karl, Béatrice Gillon, Arsen Gukasov, Gregory Chaboussant, Ana Borta, Olga Iasco, Dominique Luneau, Hiroshi Sakiyama, Masahiro Mikuriya und Makoto Handa. „Polarized Neutron Diffraction study of the molecular magnetic anisotropy“. Acta Crystallographica Section A Foundations and Advances 70, a1 (05.08.2014): C278. http://dx.doi.org/10.1107/s2053273314097216.

Der volle Inhalt der Quelle
Annotation:
The magnetic anisotropy is a prerequisite for a metal complex to behave as a single-molecule magnet (SMM). Unfortunately, today we do not fully understand the relationships between the local structural parameters and the magnetic anisotropy that results at the molecular level. This is an issue that has become recursive in this area. Out of the synthesis work which is still important, but generates a multiplication of SMMs with frustrating properties, there are various studies to understand these relationships among which most are theoretical studies. In this context, we believe that polarized neutron diffraction (PND) can provide an experimental and complementary point of view to these theoretical studies. PND is indeed well known to allow an accurate determination of the spin density in magnetic compounds and in the field of molecular magnetism it has provided unique information on the pathways and the nature of intra- or intermolecular magnetic coupling [1]. In the case of highly anisotropic paramagnetic materials, where local magnetic moments cannot be aligned by an external magnetic field, that is more tricky, but a method based on local magnetic susceptibility tensor, has been recently developed that allows now analysing the data in this case and obtaining the magnetization distribution [2]. This approach was first used for inorganic compounds. Our idea has been to use this approach to go beyond the reconstruction of spin density to study the magnetic anisotropy in molecular systems. In this paper, we present the results of such an approach applied for the first time to metal complexes that are simple mono and dinuclear cobalt(II) complexes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kentsch, Carsten, Wolfgang Henschel, David Wharam und Dieter P. Kern. „Spin-polarized edge states of quantum Hall systems on silicon basis“. Microelectronic Engineering 83, Nr. 4-9 (April 2006): 1753–56. http://dx.doi.org/10.1016/j.mee.2006.01.188.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tsukerblat, Boris, Andrew Palii und Juan Modesto Clemente-Juan. „Self-trapping of charge polarized states in four-dot molecular quantum cellular automata: bi-electronic tetrameric mixed-valence species“. Pure and Applied Chemistry 87, Nr. 3 (01.03.2015): 271–82. http://dx.doi.org/10.1515/pac-2014-0904.

Der volle Inhalt der Quelle
Annotation:
AbstractOur interest in this article is prompted by the problem of the vibronic self-trapping of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. We report the evaluation of the electronic states and the adiabatic potentials of mixed-valence (MV) systems in which two electrons (or holes) are shared among four sites. These systems are exemplified by the two kinds of tetra–ruthenium (2Ru(II)+ 2Ru(III)) clusters (assembled as two coupled Creutz–Taube dimers) for which molecular implementation of mQCA was proposed. The tetra–ruthenium clusters include two holes shared among four sites and correspondingly we employ the model which takes into account the electron transfer processes as well as the Coulomb repulsion in the different instant positions of localization. The vibronic self-trapping is considered within the conventional vibronic Piepho, Krausz and Schatz (PKS) model adapted to the bi-electronic MV species with the square topology. This leads to a complicated vibronic problems (21A1g + 1B1g + 1B2g + 1Eu) ⊗ (b1g + eu) and (3A2g + 3B1g + 23Eu) ⊗ (b1g + eu) for spin-singlet and spin-triplet states correspondingly. The adiabatic potentials are evaluated with account for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic localization in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and strength of the vibronic coupling.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

BRODSKY, STANLEY J. „HADRON SPIN DYNAMICS“. International Journal of Modern Physics A 18, Nr. 08 (30.03.2003): 1531–50. http://dx.doi.org/10.1142/s0217751x03015027.

Der volle Inhalt der Quelle
Annotation:
Spin effects in exclusive and inclusive reactions provide an essential new dimension for testing QCD and unraveling hadron structure. Remarkable new experiments from SLAC, HERMES (DESY), and Jefferson Lab present many challenges to theory, including measurements at HERMES and SMC of the single spin asymmetries in ep → e′ π X where the proton is polarized normal to the scattering plane. This type of single spin asymmetry may be due to the effects of rescattering of the outgoing quark on the spectators of the target proton, an effect usually neglected in conventional QCD analyses. Many aspects of spin, such as single-spin asymmetries and baryon magnetic moments are sensitive to the dynamics of hadrons at the amplitude level, rather than probability distributions. I will illustrate the novel features of spin dynamics for relativistic systems by examining the explicit form of the light-front wavefunctions for the two-particle Fock state of the electron in QED, thus connecting the Schwinger anomalous magnetic moment to the spin and orbital momentum carried by its Fock state constituents and providing a transparent basis for understanding the structure of relativistic composite systems and their matrix elements in hadronic physics. I also present a survey of outstanding spin puzzles in QCD, particularly ANN in elastic pp scattering, the J/ψ → ρπ puzzle, and J/ψ polarization at the Tevatron.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Spin Polarized Molecular Systems"

1

Sarbadhikary, Prodipta. „Magnetic and transport properties of spin polarized molecular systems: theoretical perspective“. Thesis, University of North Bengal, 2021. http://ir.nbu.ac.in/handle/123456789/4668.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lin, Wenzhi. „Growth and Scanning Tunneling Microscopy Studies of Magnetic Films on Semiconductors and Development of Molecular Beam Epitaxy/Pulsed Laser Deposition and Cryogenic Spin-Polarized Scanning Tunneling Microscopy System“. Ohio University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1304610814.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Buckle, S. J. „Molecular field effects in electron spin polarized atomic deuterium“. Thesis, University of Sussex, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372071.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Brüggemann, Jochen [Verfasser], und Michael [Akademischer Betreuer] Thorwart. „Spin-polarized Transport in Nanoelectromechanical Systems / Jochen Brüggemann. Betreuer: Michael Thorwart“. Hamburg : Staats- und Universitätsbibliothek Hamburg, 2015. http://d-nb.info/1073248100/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bastjan, Marta. „Magneto-optical study of spin polarized states in strongly correlated systems“. München Verl. Dr. Hut, 2008. http://d-nb.info/989219291/04.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hoang, Danh tai. „Phase transition and Spin transport in Complex Systems : Frustrated spin systems, Molecular and Liquid Crystals“. Thesis, Cergy-Pontoise, 2012. http://www.theses.fr/2012CERG0621/document.

Der volle Inhalt der Quelle
Annotation:
Dans la thèse, nous avons utilisé des simulations de Monte Carlo combinées avec différentes techniques efficaces tels que les méthodes d'histogramme pour étudier les transitions de phase et transport des spins dans différents systèmes. La première partie est consacrée à l'étude des transition de phase dans les systèmes de spins frustrés: (i) le modèle J_1-J_2 avec des spins Ising dans le régime antiferromagnétique complet, (ii) le modèle HCP avec des spins Ising et des spins $XY$ dans le régime antiferromagnétique complet. Les résultats obtenus montrent en effet une transition du premier ordre que l'on trouve plus tôt dans d'autres systèmes frustrés. La deuxième partie montre les état fondamental et transitions de phase dans les cristaux moléculaires et dans les liquides de dimères. Pour faire face à ces systèmes, nous avons utilisé le modèle de Potts en tenant compte de l'interaction dipolaire pour expliquer structures périoques en couches observées expérimentalement. Les résultats montrent des effets étonnants de cette interaction à longue portée. L'effet de l'interaction d'échange de surface a été pris en compte dans ce travail. Finalement, nous avons calculé la résistivité des spins itinérants. Nous nous sommes concentrés en particulier sur les effets des fluctuations de spin dans la région de transition de phase. Des résultats intéressants ont été obtenus montrant une forte corrélation entre les fluctuations de spin et le comportement de la résistivité
In this thesis, we have used Monte Carlo simulations combined with different efficient techniques such as histogram methods to study the phase transitions and spin transport in various systems. The first part is devoted to the investigation of phase transition in frustrated spin systems: (i) the J_1-J_2 model with Ising spin in the full antiferromagnetic regime, (ii) the HCP lattice with both Ising and XY spin in the full antiferromagnetic regime. The results obtained show indeed a first-order transition as found earlier in other frustrated systems. The second part shows the ground state and phase transitions in molecular crystals and in dimer liquids. To deal with these systems, we have used the Potts model taking into the account the dipolar interaction to explain long-period layered structures experimentally observed. The results show amazing effects of this long-range interaction. The effect of surface exchange interaction has been considered in this work. Finally, we describe the resistivity of itinerant spins. We focused in particular on the effects of spin fluctuations in the phase transition region. Interesting results have been obtained showing a strong correlation between spin fluctuations and the behavior of the resistivity
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Choi, Deung jang. „Kondo effect and detection of a spin-polarized current in a quantum point contact“. Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAE029/document.

Der volle Inhalt der Quelle
Annotation:
L'effet Kondo observé dans des objets individuels constitue un système modèle pour l’étude de corrélations électroniques. Ces dernières jouent un rôle moteur dans le domaine émergent de l'électronique de spin (ou spintronique) où l’utilisation d’atomes issus des terres rares et des métaux de transition est incontournable. Dans ce contexte, l’étude de l'interaction d’une impureté Kondo avec des électrodes ferromagnétiques ou avec d’autres impuretés magnétiques peut donc s’avérer fondamental pour la spintronique. L’effet Kondo est sensible à son environnement magnétique car en présence d’interactions magnétiques la résonance ASK se dédouble. Dans une certaine mesure, la résonance ASK agit comme un niveau atomique discret doublement dégénérée qui subit un dédoublement Zeeman en présence d'un champ magnétique ou plus généralement d’un champ magnétique effectif. Inversement, la détection d'un dédoublement Zeeman indique l'existence d'un champ magnétique. Dans une boîte quantique, le couplage de la boîte avec les deux électrodes est faible en général et la largeur de la résonance ASK est donc de l'ordre de quelques meV. Beaucoup d’études de l’effet Kondo en présence d’interactions magnétiques ont été menées sur les boîtes quantiques, grâce notamment au contrôle qui peut être exercé sur la résonance ASK, mais aussi grâce au faible élargissement de la résonance qui peut alors être dédoublée avec un champ magnétique de l’ordre de 10 Tesla ou moins. A ces études, s’ajoutent de nombreux travaux similaires menés avec des dispositifs tels des jonctions cassées comprenant une molécule individuelle jouant le rôle de l’impureté magnétique. En revanche, peu d’études de ce type ont été consacrées aux atomes individuels. Cela est dû à l’hybridation plus marquée entre l'impureté atomique et la surface comparée aux boîtes quantiques, qui entraine une largeur typique de 10 meV ou plus pour la résonance ASK. Un champ magnétique d'environ 100 T ou plus est alors nécessaire afin de dédoubler la résonance et donc en pratique difficile à mettre en oeuvre. Cette thèse est consacrée précisément à l’étude de l'interaction entre une impureté Kondo individuel et son environnement magnétique à l’aide d’un STM. Une nouvelle stratégie est adoptée ici par rapport aux études antérieures de ce genre. Tout d'abord, nous éliminons la barrière tunnel en établissons un contact pointe-atome. Nous formons ainsi un point de contact quantique comprenant une seule impureté Kondo. Deuxièmement, nous utilisons des pointes ferromagnétiques. Le contact pointe-atome permet de sonder l'influence du ferromagnétisme sur l'impureté Kondo vial’observation de la résonance ASK. La géométrie de contact permet tout particulièrement de produire une densité de courant polarisé en spin suffisamment élevée pour qu’elle entraîne un dédoublement de la résonance ASK. Ce dédoublement constitue la première observation à l’échelle atomique d’un phénomène connu sous le nom d’accumulation de spin, laquelle se trouve être une propriété fondamentale de la spintronique
The Kondo effect of these single objects represents a model system to study electron correlations, which are nowadays of importance in relation to the emerging field of spin electronics, also known as spintronics, where chemical elements with partially filled d or f shells play a central role. Also of particular interest to spintronics is the interaction of single Kondo impurities with ferromagnetic leads or with other magnetic impurities. A Kondo impurity is in fact sensitive to its magnetic environment as the ASK resonance is usually split into two resonances in the presence of magnetic interactions. To some extent, the ASK resonance acts as a two-fold degenerate energy level of an atom which undergoes a Zeeman splitting in the presence of an effective magnetic field. Conversely, the detection of a Zeeman splitting indicates the existence of a magnetic field. In a QD, the coupling of the QD to the two leads is very weak in general, and the Kondo resonance is in the range of a few meV. Many studies focusing on magnetic interaction have been carried out on QDs, due to the high control that can be extended to the ASK resonance and its low energy range, allowing to split the resonance with a magnetic field of 10 T. Similar work has also been carried out in single-molecule or lithographically-defined devices. Although STM is an ideal tool to study the Kondo effect of single atoms, there is still a strong lack of experimental studies concerning atoms in the presence of magnetic interactions. This is partly due to the stronger impurity-metal hybridization compared to QDs, which places the ASK width in the range of 10 meV. An effective magnetic field of 100 T would be needed to split the resonance. The present Thesis is devoted precisely at studying the interaction between a single Kondo impurity with its magnetic environment through STM. A new strategy is adopted herecompared to former studies of this kind. Firstly, we contact a single-magnetic atom on a surface with a STM tip thereby eliminating the vacuum barrier. Secondly, we use ferromagnetic tips. The contact with a single atom allows probing the influence of ferromagnetism on the Kondo impurity i. e. its ASK resonance. But most importantly, the contact geometry produces sufficiently high current densities compared to the tunneling regime, so that the ASK resonance becomes sensitive to the presence of a spin-polarized current. This constitutes the first atomic scale detection of a spin-polarized current with a single Kondo impurity
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Possanner, Stefan. „Modeling and simulation of spin-polarized transport at the kinetic and diffusive level“. Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1735/.

Der volle Inhalt der Quelle
Annotation:
L'objectif de cette thèse est de contribuer à la compréhension des phénomènes de mouvement de l'électron induits par le spin. Ces phénomènes aparaissent lorsqu'un électron se déplace à travers un environnement (partiellement) magnétique, de telle sorte que son moment magnétique (spin) peut interagir avec l'environnement. La nature quantique pure du spin nécessite des modèles de transport qui traitent des effets comme la cohérence quantique, l'intrication (corrélation) et la dissipation quantique. Sur le niveau méso- et macroscopique, il n'est pas encore clair dans quelles circonstances ces effets quantiques du spin peut transparaitre. Le but de ce travail est, d'une part, de dériver des nouveaux modèles de transport de spin à partir des principes de base et, d'autre part, de développer des algorithmes numériques qui permettent de trouver une solution de ces modèles. Cette thèse se compose de quatre parties. La première partie introductive contient un aperçu des concepts fondamentaux liés au transport polarisé en spin, tels que la magnéto-résistance géante (GMR), le couple de transfert de spin dans les multi-couches magnétiques et le caractère matriciel des équations de transport qui prennent en compte la cohérence de spin. L'accent est mis sur la modélisation du couple de transfert de spin, qui représente l'intersection de ces concepts. En particulier, nous considérons pour sa description le modèle diffusif de Zhang-Levy-Fert (ZLF) qui se compose de l'équation de Landau-Lifshitz et d'une équation de diffusion matricielle pour le spin. Un schéma de différences finies est développé pour résoudre numériquement ce système non-linéaire dans des structures multi-couches. Le modèle est testé par comparaison des résultats obtenus aux données expérimentales récentes. Les parties deux et trois forment le noyau thématique de cette thèse. Dans la deuxième partie nous proposons une équation de Boltzmann matricielle qui permet la description de la cohérence de spin sur le niveau cinétique. La nouveauté est un opérateur de collision dans lequel les taux de transition de la quantité de mouvement sont modélisés par une matrice 2x2 hermitienne; par conséquent, les libre parcours moyens des électrons spin-up et spin-down sont représentés par les valeurs propres de cette matrice de scattering. Après une dérivation formelle de l'équation de Vlasov matricielle à partir de l'équation de Wigner, l'équation cinétique qui suit est étudiée en ce qui concerne l'existence, l'unicité et la positivé d'une solution. En outre, le nouveau opérateur de collision est étudié rigoureusement et la limite de diffusion tc -> 0, correspondant à l'annulation de la moyenne de temps de scattering, est effectué. Les équations de drift-diffusion matricielle qui sont obtenues représentent une amélioration par rapport au modèle traité dans la première partie. Ce dernier est obtenu dans la limite ou la différence entre les deux valeurs propres de la matrice de scattering va disparaître. La troisième partie est consacrée à l'obtention de l'opérateur de collision matricielle introduit auparavant, à partir des principes quantiques. Pour cela, nous augmentons l'équation de von Neumann d'un système composite par un terme dissipatif qui fait tendre l'opérateur de densité totale vers l'approximation de Born. En vertu de la prémisse que la relaxation est le processus dominant, on obtient une hiérarchie d'équations non-Markoviennes. Celles-ci découlent d'une expansion de l'opérateur de densité en termes de tr, le temps de relaxation. Dans la limite de Born-Markov, tr -> 0, l'équation de Lindblad est récupérée. Elle a la même structure que l'opérateur de collision proposé dans la deuxième partie. Cependant, l'équation de Lindblad est encore une équation microscopique; donc la prochaine étape serait de procéder à la limite semi-classique du résultat obtenu. Dans la quatrième partie nous procédons à une étude numérique d'un modèle quantique-diffusif de spin qui décrit le transport dans un gaz d'électrons bidimensionnel avec un couplage spin-orbite de Rashba. Ce modèle suppose que les électrons sont dans un état d'équilibre quantique sous la forme d'un opérateur de Maxwell. Nous présentons deux discrétisations espace-temps du modèle couplé par l'équation de Poisson. Dans une première étape on applique une discrétisation en temps et on montre que les systèmes sont bien définis. Ceux-ci sont basés sur un formalisme fonctionnel pour traiter les relations non-locales entre les densités de spin. Nous utilisons ensuite des discrétisations espace-temps pour simuler la dynamique dans une géométrie typique d'un transistor. Les approximations différences finies sont du premier ordre en temps et du second ordre en espace. Les fonctionnelles discrètes sont minimisée à l'aide d'un algorithme du gradient conjugué et la méthode de Newton est appliquée afin de trouver les minima dans la direction désirée
The aim of this thesis is to contribute to the understanding of spin-induced phenomena in electron motion. These phenomena arise when electrons move through a (partially) magnetic environment, in such a way that its magnetic moment (spin) may interact with the surroundings. The pure quantum nature of the spin requires transport models that deal with effects like quantum coherence, entanglement (correlation) and quantum dissipation. On the meso- and macroscopic level it is not yet clear under which circumstances these quantum effects may transpire. The purpose of this work is, on the one hand, to derive novel spin transport models from basic principles and, on the other hand, to develop numerical algorithms that allow for a solution of these new and other existing model equations. The thesis consists of four parts. The first part has introductory character; it comprises an overview of fundamental spin-related concepts in electronic transport such as the giant-magneto-resistance (GMR) effect, the spin-transfer torque in metallic magnetic multilayers and the matrix-character of transport equations that take spin-coherent electron states into account. Special emphasis is placed on the modeling of the spin-transfer torque which represents the intersection of these concepts. In particular, we consider the diffusive Zhang-Levy-Fert (ZLF) model, an exchange-torque model that consists of the Landau-Lifshitz equation and a heuristic matrix spin-diffusion equation. A finite difference scheme based on Strang operator splitting is developed that enables a numerical, self-consistent solution of this non-linear system within multilayer structures. Finally, the model is tested by comparison of numerical results to recent experimental data. Parts two and three are the thematic core of this thesis. In part two we propose a matrix-Boltzmann equation that allows for the description of spin-coherent electron transport on a kinetic level. The novelty here is a linear collision operator in which the transition rates from momentum k to momentum k' are modeled by a 2x2 Hermitian matrix; hence the mean-free paths of spin-up and spin-down electrons are represented by the eigenvalues of this scattering matrix. After a formal derivation of the matrix-Vlasov equation as the semi-classical limit of the one-electron Wigner equation, the ensuing kinetic equation is studied with regard to existence, uniqueness and positive semi-definiteness of a solution. Furthermore, the new collision operator is investigated rigorously and the diffusion limit tc -> 0 of the mean scattering time is performed. The obtained matrix drift-diffusion equations are an improvement over the heuristic spin-diffusive model treated in part one. The latter is obtained in the limit of identical eigenvalues of the scattering matrix. Part three is dedicated to a first step towards the derivation of the matrix collision operator, introduced in part two, from first principles. For this, we augment the von Neumann equation of a composite quantum system by a dissipative term that relaxes the total state operator towards the Born approximation. Under the premise that the relaxation is the dominant process we obtain a hierarchy of non-Markovian master equations. The latter arises from an expansion of the total state operator in powers of the relaxation time tr. In the Born-Markov limit tr -> 0 the Lindblad master equation is recovered. It has the same structure as the collision operator proposed in part two heuristically. However, the Lindblad equation is still a microscopic equation; thus the next step would be to carry out the semi-classical limit of the result obtained. In part four we perform a numerical study of a quantum-diffusive, two-component spin model of the transport in a two-dimensional electron gas with Rashba spin-orbit coupling. This model assumes the electrons to be in a quantum equilibrium state in the form of a Maxwellian operator. We present two space-time discretizations of the model which also comprise the Poisson equation. In a first step pure time discretization is applied in order to prove the well-posedness of the two schemes, both of which are based on a functional formalism to treat the non-local relations between spin densities via the chemical potentials. We then use fully space-time discrete schemes to simulate the dynamics in a typical transistor geometry. Finite difference approximations applied in these schemes are first order in time and second order in space. The discrete functionals introduced are minimized with the help of a conjugate gradient-based algorithm in which the Newton method is applied to find the desired line minima
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chaudhury, Souma. „Quantum Control and Quantum Chaos in Atomic Spin Systems“. Diss., The University of Arizona, 2008. http://hdl.handle.net/10150/195449.

Der volle Inhalt der Quelle
Annotation:
Laser-cooled atoms offer an excellent platform for testing new ideas of quantum control and measurement. I will discuss experiments where we use light and magnetic fields to drive and monitor non-trivial quantum dynamics of a large spin-angular momentum associated with an atomic hyperfine ground state. We can design Hamiltonians to generate arbitrary spin states and perform a full quantum state reconstruction of the results. We have implemented and verified time optimal controls to generate a broad variety of spin states, including spin-squeezed states useful for metrology. Yields achieved are of the range 0.8-0.9.We present a first experimental demonstration of the quantum kicked top, a popular paradigm for quantum and classical chaos. We make `movies' of the evolving quantum state which provides a direct observation of phase space dynamics of this system. The spin dynamics seen in the experiment includes dynamical tunneling between regular islands, rapid spreading of states throughout the chaotic sea, and surprisingly robust signatures of classical phase space structures. Our data show differences between regular and chaotic dynamics in the sensitivity to perturbations of the quantum kicked top Hamiltonian and in the average electron-nuclear spin entanglement during the first 40 kicks. The difference, while clear, is modest due to the small size of the spin.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Maheswari, Dhiraj. „QCD Process in Few Nucleon Systems“. FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3795.

Der volle Inhalt der Quelle
Annotation:
One of the important issues of Quantum Chromodynamics (QCD) - the fundamental theory of strong interaction, is the understanding of the role of the quark-gluon interactions in the processes involving nuclear targets. One direction in such studies is to explore the onset of the quark gluon degrees of freedom in nuclear dynamics. The other direction is using the nuclear targets as a “micro-labs” in studies of the QCD processes involving protons and neutrons bound in the nucleus. In the proposed research, we work in both directions considering high energy photo- and electro-production reactions involving deuteron and 3 He nuclei. In the first half of the research, we study the high energy break-up of the 3 He nucleus, caused by a incoming photon, into a proton-deuteron pair at the large center of mass scattering angle. The main motivation of the research is the theoretical interpretation of recent experimental data which revealed the unprecedentedly large exponent s −17 , for the energy dependence of the differential cross section. In the present research, we extend the theoretical formalism of the hard QCD rescattering model to calculate energy and angular dependences of the absolute cross section of the γ 3 He → pd reaction in high momentum transfer limit. The second half of the research explores the deep-inelastic scattering of a polarized electron off the polarized deuteron and 3 He nuclei, to explore the quark-gluon structure of polarized neutron. The main reason of using deuteron is that it is the most simple and best understood nucleus. While the reason of using polarized 3 He as an effective polarized neutron target is that because of the Pauli-principle, the two protons in the target are in the opposite spin states and thus the neutron has all the polarization of the 3 He nucleus. However this approximation is exact only for the S-state and becomes less accurate with the increase of the internal momentum of the bound nucleons in the nucleus. There are several planned experiments which will be performed during next few years at the kinematics in which the internal momenta of the probed neutron cannot be neglected. Therefore, for the reliable interpretation of the data, all the nuclear effects, especially the effects related to the relativistic treatment of high momentum component of the nuclear wave function, should be taken into account. In this work, we developed a comprehensive theoretical framework for calculation of the all relevant nuclear effects that will allow the accurate extraction of the neutron data from deepinelastic scattering involving deuteron and 3 He targets.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Spin Polarized Molecular Systems"

1

Conference on Spin Polarized Quantum Systems (1988 Torino, Italy). Spin polarized quantum systems: June 20-24, 1988, Villa Gualino, Torino. Herausgegeben von Stingari S, Institute for Scientific Interchange und Università degli studi di Trento. Dipartimento di fisica. Singapore: World Scientific, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ribbing, Carl. Spin-orbit coupling in transition metal systems: A study of octahedral Ni(II). Stockholm: Division of Physical Chemistry, Arrhenius Laboratory, University of Stockholm, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Spin Polarized Quantum Systems: June 20-24, 1988, Villa Gualino, Torino. World Scientific Pub Co Inc, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Qin, Peter Z., und Kurt Warncke. Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions Part B. Elsevier Science & Technology Books, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Qin, Peter Z., und Kurt Warncke. Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions Part A. Elsevier Science & Technology Books, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Qin, Peter Z., und Kurt Warncke. Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions Part B. Elsevier Science & Technology Books, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Qin, Peter Z., und Kurt Warncke. Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions Part A. Elsevier Science & Technology Books, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lechner, Barbara A. J. Studying Complex Surface Dynamical Systems Using Helium-3 Spin-Echo Spectroscopy. Springer, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lechner, Barbara A. J. Studying Complex Surface Dynamical Systems Using Helium-3 Spin-Echo Spectroscopy. Springer London, Limited, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Studying Complex Surface Dynamical Systems Using Helium-3 Spin-Echo Spectroscopy. Springer International Publishing AG, 2016.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Spin Polarized Molecular Systems"

1

Yamada, Toyo Kazu. „Spin Polarization of Single Organic Molecule Using Spin-Polarized STM“. In Molecular Architectonics, 381–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57096-9_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Siegmann, H. C. „Spin-Polarized Electrons and Magnetism 2000“. In Physics of Low Dimensional Systems, 1–14. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/0-306-47111-6_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wenk, Paul, Masayuki Yamamoto, Jun-ichiro Ohe, Tomi Ohtsuki, Bernhard Kramer und Stefan Kettemann. „Spin Polarized Transport and Spin Relaxation in Quantum Wires“. In Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals, 277–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10553-1_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Thulstrup, Erik W., und Josef Michl. „Spectroscopic Applications of Molecular Alignment“. In Polarized Spectroscopy of Ordered Systems, 1–24. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3039-1_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Szulczewski, Greg. „Spin Polarized Electron Tunneling and Magnetoresistance in Molecular Junctions“. In Unimolecular and Supramolecular Electronics I, 275–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/128_2011_223.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kuball, H. G., H. Friesenhan und A. Schönhofer. „MOLECULAR ALIGNMENT — Origin, Methods of Measurement, and Theoretical Description“. In Polarized Spectroscopy of Ordered Systems, 85–104. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3039-1_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dediu, V., I. Bergenti, F. Biscarini, M. Cavallini, M. Murgia, P. Nozar, G. Ruani und C. Taliani. „Spin Polarized Effects at the Interface Between Manganites and Organic Semiconductors“. In Molecular Nanowires and Other Quantum Objects, 415–24. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2093-3_36.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mamaev, Yu A., A. V. Subashievf, Yu P. Yashin, A. N. Ambrazhei, H. J. Drouhin, G. Lampel, J. E. Clendenin, T. Maruyama und G. Mulhollan. „Spin Polarized Electron Transport and Emission from Strained Semiconductor Heterostructures“. In Physics of Low Dimensional Systems, 373–82. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/0-306-47111-6_35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bustamante, Carlos, David Keller und Myeonghee Kim. „Theory of Absorption and Circular Dichroism of Large Inhomogeneous Molecular Aggregates“. In Polarized Spectroscopy of Ordered Systems, 357–80. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3039-1_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ressouche, E., und J. Schweizer. „Ab Initio Calculations Versus Polarized Neutron Diffraction for the Spin Density of Free Radicals“. In Molecular Magnets Recent Highlights, 119–37. Vienna: Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-6018-3_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Spin Polarized Molecular Systems"

1

Toporkov, Dmitriy K., D. M. Nikolenko, I. A. Rachek, Yu V. Shestakov, A. V. Yurchenko, R. Engels, L. Huxold und M. Büscher. „Status of the Polarized Molecular Source“. In 23rd International Spin Physics Symposium. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.346.0178.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kartoshkin, Victor A., und George V. Klementiev. „Spectroscopy of short-lived spin-polarized molecular complexes“. In Luebeck - DL tentative, herausgegeben von Herbert M. Heise, Ernst H. Korte und Heinz W. Siesler. SPIE, 1992. http://dx.doi.org/10.1117/12.56480.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rakitzis, T., Giorgos Vasilakis, George Katsoprinakis, Konstantinos Tazes, Michalis Xygkis und Alexandros Spiliotis. „A NANOSECOND-RESOLVED ULTRAHIGH-DENSITY SPIN-POLARIZED HYDROGEN MAGNETOMETER“. In 2021 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2021. http://dx.doi.org/10.15278/isms.2021.wb02.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lenisa, P. „Nuclear Polarization of Molecular Hydrogen Recombined on Drifilm“. In SPIN 2002: 15th International Spin Physics Symposium and Workshop on Polarized Electron Sources and Polarimeters. AIP, 2003. http://dx.doi.org/10.1063/1.1607273.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Wenyong, Curt A. Richter, David G. Seiler, Alain C. Diebold, Robert McDonald, C. Michael Garner, Dan Herr, Rajinder P. Khosla und Erik M. Secula. „Spin-polarized Inelastic Electron Tunneling Spectroscopy of Molecular Magnetic Tunnel Junctions“. In CHARACTERIZATION AND METROLOGY FOR NANOELECTRONICS: 2007 International Conference on Frontiers of Characterization and Metrology. AIP, 2007. http://dx.doi.org/10.1063/1.2799421.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Meyerovich, A. E. „Kinetic phenomena in spin-polarized quantum systems“. In Symposium on quantum fluids and solids−1989. AIP, 1989. http://dx.doi.org/10.1063/1.38831.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Krämer, Dirk. „The SMC polarized target—systems and operations“. In The 11th International symposium on high energy spin physics. AIP, 1995. http://dx.doi.org/10.1063/1.48928.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ryblewski, Radoslaw, Wojciech Florkowski, Bengt Friman, Amaresh Jaiswal und Enrico Speranza. „Relativistic fluid dynamics of spin-polarized systems of particles“. In XIII Quark Confinement and the Hadron Spectrum. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.336.0158.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bowen, K., D. Lindle, M. Piancastelli, W. Stolte, R. Guillemin und O. Hemmers. „NONDIPOLE EFFECTS IN CHIRAL SYSTEMS MEASURED WITH LINEARLY POLARIZED LIGHT“. In 70th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2015. http://dx.doi.org/10.15278/isms.2015.wg06.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hatanaka, K. „Experimental Studies on Three-Nucleon Systems at RCNP“. In SPIN 2002: 15th International Spin Physics Symposium and Workshop on Polarized Electron Sources and Polarimeters. AIP, 2003. http://dx.doi.org/10.1063/1.1607226.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Spin Polarized Molecular Systems"

1

Silvera, I. F. Fundamental properties of spin-polarized quantum systems. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/6361830.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Silvera, I. Fundamental properties of spin-polarized quantum systems. Office of Scientific and Technical Information (OSTI), Januar 1989. http://dx.doi.org/10.2172/5593974.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie