Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Spike-and-slab priors“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Spike-and-slab priors" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Spike-and-slab priors"
Ročková, Veronika, und Edward I. George. „Negotiating multicollinearity with spike-and-slab priors“. METRON 72, Nr. 2 (11.06.2014): 217–29. http://dx.doi.org/10.1007/s40300-014-0047-y.
Der volle Inhalt der QuelleRockova, Veronika, und Kenichiro McAlinn. „Dynamic Variable Selection with Spike-and-Slab Process Priors“. Bayesian Analysis 16, Nr. 1 (2021): 233–69. http://dx.doi.org/10.1214/20-ba1199.
Der volle Inhalt der QuelleAntonelli, Joseph, Giovanni Parmigiani und Francesca Dominici. „High-Dimensional Confounding Adjustment Using Continuous Spike and Slab Priors“. Bayesian Analysis 14, Nr. 3 (September 2019): 805–28. http://dx.doi.org/10.1214/18-ba1131.
Der volle Inhalt der QuelleHernández-Lobato, José Miguel, Daniel Hernández-Lobato und Alberto Suárez. „Expectation propagation in linear regression models with spike-and-slab priors“. Machine Learning 99, Nr. 3 (10.12.2014): 437–87. http://dx.doi.org/10.1007/s10994-014-5475-7.
Der volle Inhalt der QuelleScheipl, Fabian, Ludwig Fahrmeir und Thomas Kneib. „Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models“. Journal of the American Statistical Association 107, Nr. 500 (17.10.2012): 1518–32. http://dx.doi.org/10.1080/01621459.2012.737742.
Der volle Inhalt der QuelleYen, Tso-Jung. „A majorization–minimization approach to variable selection using spike and slab priors“. Annals of Statistics 39, Nr. 3 (Juni 2011): 1748–75. http://dx.doi.org/10.1214/11-aos884.
Der volle Inhalt der QuelleKoch, Brandon, David M. Vock, Julian Wolfson und Laura Boehm Vock. „Variable selection and estimation in causal inference using Bayesian spike and slab priors“. Statistical Methods in Medical Research 29, Nr. 9 (15.01.2020): 2445–69. http://dx.doi.org/10.1177/0962280219898497.
Der volle Inhalt der QuelleXi, Ruibin, Yunxiao Li und Yiming Hu. „Bayesian Quantile Regression Based on the Empirical Likelihood with Spike and Slab Priors“. Bayesian Analysis 11, Nr. 3 (September 2016): 821–55. http://dx.doi.org/10.1214/15-ba975.
Der volle Inhalt der QuelleLegramanti, Sirio, Daniele Durante und David B. Dunson. „Bayesian cumulative shrinkage for infinite factorizations“. Biometrika 107, Nr. 3 (27.05.2020): 745–52. http://dx.doi.org/10.1093/biomet/asaa008.
Der volle Inhalt der QuelleYi, Jieyi, und Niansheng Tang. „Variational Bayesian Inference in High-Dimensional Linear Mixed Models“. Mathematics 10, Nr. 3 (31.01.2022): 463. http://dx.doi.org/10.3390/math10030463.
Der volle Inhalt der QuelleDissertationen zum Thema "Spike-and-slab priors"
Agarwal, Anjali. „Bayesian variable selection with spike-and-slab priors“. The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461940937.
Der volle Inhalt der QuelleNaveau, Marion. „Procédures de sélection de variables en grande dimension dans les modèles non-linéaires à effets mixtes. Application en amélioration des plantes“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM031.
Der volle Inhalt der QuelleMixed-effects models analyze observations collected repeatedly from several individuals, attributing variability to different sources (intra-individual, inter-individual, residual). Accounting for this variability is essential to characterize the underlying biological mechanisms without biais. These models use covariates and random effects to describe variability among individuals: covariates explain differences due to observed characteristics, while random effects represent the variability not attributable to measured covariates. In high-dimensional context, where the number of covariates exceeds the number of individuals, identifying influential covariates is challenging, as selection focuses on latent variables in the model. Many procedures have been developed for linear mixed-effects models, but contributions for non-linear models are rare and lack theoretical foundations. This thesis aims to develop a high-dimensional covariate selection procedure for non-linear mixed-effects models by studying their practical implementations and theoretical properties. This procedure is based on the use of a gaussian spike-and-slab prior and the SAEM algorithm (Stochastic Approximation of Expectation Maximisation Algorithm). Posterior contraction rates around true parameter values in a non-linear mixed-effects model under a discrete spike-and-slab prior have been obtained, comparable to those observed in linear models. The work in this thesis is motivated by practical questions in plant breeding, where these models describe plant development as a function of their genotypes and environmental conditions. The considered covariates are generally numerous since varieties are characterized by thousands of genetic markers, most of which have no effect on certain phenotypic traits. The statistical method developed in the thesis is applied to a real dataset related to this application
Mismer, Romain. „Convergence et spike and Slab Bayesian posterior distributions in some high dimensional models“. Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC064.
Der volle Inhalt der QuelleThe first main focus is the sparse Gaussian sequence model. An Empirical Bayes approach is used on the Spike and Slab prior to derive minimax convergence of the posterior second moment for Cauchy Slabs and a suboptimality result for the Laplace Slab is proved. Next, with a special choice of Slab convergence with the sharp minimax constant is derived. The second main focus is the density estimation model using a special Polya tree prior where the variables in the tree construction follow a Spike and Slab type distribution. Adaptive minimax convergence in the supremum norm of the posterior distribution as well as a nonparametric Bernstein-von Mises theorem are obtained
Sharp, Kevin John. „Effective Bayesian inference for sparse factor analysis models“. Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/effective-bayesian-inference-for-sparse-factor-analysis-models(4facfde0-0aae-4f09-aeaa-960111e854ff).html.
Der volle Inhalt der QuelleXu, Lizhen. „Bayesian Methods for Genetic Association Studies“. Thesis, 2012. http://hdl.handle.net/1807/34972.
Der volle Inhalt der QuelleBuchteile zum Thema "Spike-and-slab priors"
Vannucci, Marina. „Discrete Spike-and-Slab Priors: Models and Computational Aspects“. In Handbook of Bayesian Variable Selection, 3–24. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003089018-1.
Der volle Inhalt der QuelleNarisetty, Naveen N. „Theoretical and Computational Aspects of Continuous Spike-and-Slab Priors“. In Handbook of Bayesian Variable Selection, 57–80. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003089018-3.
Der volle Inhalt der QuelleZhou, Shuang, und Debdeep Pati. „Recent Theoretical Advances with the Discrete Spike-and-Slab Priors“. In Handbook of Bayesian Variable Selection, 25–56. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003089018-2.
Der volle Inhalt der QuelleWu, Shengyi, Kaito Shimamura, Kohei Yoshikawa, Kazuaki Murayama und Shuichi Kawano. „Variable Fusion for Bayesian Linear Regression via Spike-and-slab Priors“. In Intelligent Decision Technologies, 491–501. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2765-1_41.
Der volle Inhalt der QuelleNayek, Rajdip, Keith Worden und Elizabeth J. Cross. „Equation Discovery Using an Efficient Variational Bayesian Approach with Spike-and-Slab Priors“. In Model Validation and Uncertainty Quantification, Volume 3, 149–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77348-9_19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Spike-and-slab priors"
Suo, Yuanming, Minh Dao, Trac Tran, Umamahesh Srinivas und Vishal Monga. „Hierarchical sparse modeling using Spike and Slab priors“. In ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638229.
Der volle Inhalt der QuelleMonga, Vishal. „Sparsity constrained estimation via spike and slab priors“. In 2017 51st Annual Conference on Information Sciences and Systems (CISS). IEEE, 2017. http://dx.doi.org/10.1109/ciss.2017.7926168.
Der volle Inhalt der QuelleFang, Shikai, Shandian Zhe, Kuang-chih Lee, Kai Zhang und Jennifer Neville. „Online Bayesian Sparse Learning with Spike and Slab Priors“. In 2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020. http://dx.doi.org/10.1109/icdm50108.2020.00023.
Der volle Inhalt der QuelleMousavi, Hojjat S., Umamahesh Srinivas, Vishal Monga, Yuanming Suo, Minh Dao und Trac D. Tran. „Multi-task image classification via collaborative, hierarchical spike-and-slab priors“. In 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014. http://dx.doi.org/10.1109/icip.2014.7025860.
Der volle Inhalt der QuelleShuku, T., und K. K. Phoon. „Bayesian Estimation for Subsurface Models using Spike-and-Slab Prior“. In 8th International Symposium on Reliability Engineering and Risk Management. Singapore: Research Publishing Services, 2022. http://dx.doi.org/10.3850/978-981-18-5184-1_ms-13-045-cd.
Der volle Inhalt der QuelleLiu, Yuhang, Wenyong Dong, Wanjuan Song und Lei Zhang. „Bayesian Nonnegative Matrix Factorization with a Truncated Spike-and-Slab Prior“. In 2019 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2019. http://dx.doi.org/10.1109/icme.2019.00251.
Der volle Inhalt der QuelleLv, Fuzai, Changhao Zhang, Zhifeng Tang und Pengfei Zhang. „Block-Sparse Signal Recovery Based on Adaptive Matching Pursuit via Spike and Slab Prior“. In 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2020. http://dx.doi.org/10.1109/sam48682.2020.9104311.
Der volle Inhalt der QuelleZhang, Xiaoxu, Li Hao und Jiaqi Liu. „Spike and Slab Prior Based Joint Sparse Channel Estimation and Multiuser Detection in MTC Communications“. In 2020 International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2020. http://dx.doi.org/10.1109/wcsp49889.2020.9299766.
Der volle Inhalt der QuelleSun, Weitian, Lei Yang, Yuchen Dou, Xuan Li und Cheng Fang. „Auto-focused Sparse Bayesian Learning for ISAR Imagery Based on Spike-and-Slab Prior Via Variational Approximation“. In 2021 International Conference on Control, Automation and Information Sciences (ICCAIS). IEEE, 2021. http://dx.doi.org/10.1109/iccais52680.2021.9624613.
Der volle Inhalt der Quelle